scholarly journals Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures

Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5125-5133 ◽  
Author(s):  
Dat Q. Tran ◽  
John Andersson ◽  
Donna Hardwick ◽  
Lolita Bebris ◽  
Gabor G. Illei ◽  
...  

Abstract Although adoptive transfer of regulatory T cells (Foxp3+ Tregs) has proven to be efficacious in the prevention and treatment of autoimmune diseases and graft-versus-host disease in rodents, a major obstacle for the use of Treg immunotherapy in humans is the difficulty of obtaining a highly purified preparation after ex vivo expansion. We have identified latency-associated peptide (LAP) and IL-1 receptor type I and II (CD121a/CD121b) as unique cell-surface markers that distinguish activated Tregs from activated FOXP3− and FOXP3+ non-Tregs. We show that it is feasible to sort expanded FOXP3+ Tregs from non-Tregs with the use of techniques for magnetic bead cell separation based on expression of these 3 markers. After separation, the final product contains greater than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapies as well as detailed studies of human Treg function in health and disease.

2004 ◽  
Vol 172 (3) ◽  
pp. 1531-1539 ◽  
Author(s):  
Song Guo Zheng ◽  
Ju Hua Wang ◽  
Michael N. Koss ◽  
Francisco Quismorio ◽  
J. Dixon Gray ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4485-4485
Author(s):  
Antonio Pierini ◽  
Dominik Schneidawind ◽  
Mareike Florek ◽  
Maite Alvarez ◽  
Yuqiong Pan ◽  
...  

Donor derived regulatory T cells (Tregs) effectively prevent graft versus host disease (GVHD) in mouse models and in early phase clinical trials. Interleukin 2 (IL-2) therapy in patients with chronic GVHD (cGVHD) can increase Treg number and the Treg/CD4+ T cell ratio resulting in organ damage reduction and symptom relief. Less is known regarding Treg-based treatment for acute GVHD (aGVHD). In this study we evaluated the role of donor Treg cellular therapy for aGVHD treatment in well established murine models. T cell depleted bone marrow (TCD BM) from C57BL/6 mice was transplanted into lethally irradiated (8 Gy) BALB/C recipients together with 7.5x105 to 1x106/animal donor derived luc+ Tcons. Naturally occurring CD4+CD25+FoxP3+ donor type Tregs (nTregs) were purified from C57BL/6 donor mice. 2.5x105/mouse nTregs were injected at day 6 or 7 after transplant in mice that showed clear clinical signs of aGVHD and Tcon proliferation assessed by bioluminescence imaging (BLI). Survival analysis showed a favorable trend for nTreg treated mice, but the impact of this treatment was modest and not statistically significant (p 0.08). aGVHD is a disease characterized by the activation and rapid proliferation of alloreactive donor conventional T cells (Tcons) directed against host antigens, so one of the major obstacles of this approach is to overcome the large number and effector function of activated Tcons. Several studies have utilized ex vivo expansion of Tregs to increase their number with the goal of maintaining suppressive function. We developed a different strategy with the intent to “educate” Tregs to specifically suppress the reactive Tcon population. We incubated 2.5x105 donor derived Tregs with irradiated (3000 cGy) blood of aGVHD affected mice for 20 hours without further stimulation and injected the entire pool of these cells, termed educated Treg (eTregs), at day 7 or 8 after transplant and Tcon injection. Interestingly eTregs significantly improved aGVHD affected mouse survival (p = 0.0025 vs Tcons alone). BLI showed no difference between the groups (p = 0.85) because the treatment intervened after Tcon proliferation and activation was initiated. To evaluate eTreg impact on graft versus tumor (GVT) effects, we transplanted BALB/C mice with C57BL/6 TCD BM and 1x104/mouse luc+ A20 tumor cells along with 1x106/mouse donor Tcons and 2.5x105 eTregs. Mice that received TCD BM and A20 tumor cells alone died from progressive tumor growth, while mice that received Tcons died from GVHD without tumor engraftment. Further animals that received both Tcon and eTreg treatment did not have tumor engraftment demonstrating that eTregs do not impact Tcon mediated GVT effects. Further studies are ongoing to characterize the eTreg population as compared to nTreg, with respect to expression of activation markers and in functional assays. Our observations indicate that Tregs can be ex vivo educated to suppress in vivo reactive and proliferating Tcons. Moreover our data demonstrate that eTreg adoptive transfer is clinically feasible and promising. These findings may be relevant for the development of clinical grade Treg based cellular therapy for the treatment of conditions caused by immune dysregulation such as aGVHD and autoimmune diseases and for transplant tolerance induction. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ying Wu ◽  
Yu-Mei Chang ◽  
Anneliese J. Stell ◽  
Simon L. Priestnall ◽  
Eshita Sharma ◽  
...  

Abstract Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function.


2002 ◽  
Vol 196 (3) ◽  
pp. 401-406 ◽  
Author(s):  
José L. Cohen ◽  
Aurélie Trenado ◽  
Douglas Vasey ◽  
David Klatzmann ◽  
Benoît L. Salomon

CD4+CD25+ immunoregulatory T cells play a pivotal role in preventing organ-specific autoimmune diseases and in tolerance induction to allogeneic organ transplants. We investigated whether these cells could also control graft-versus-host disease (GVHD), the main complication after allogeneic hematopoietic stem cell transplantation (HSCT). Here, we show that the few CD4+CD25+ T cells naturally present in the transplant regulate GVHD because their removal from the graft dramatically accelerates this disease. Furthermore, the addition of freshly isolated CD4+CD25+ T cells at time of grafting significantly delays or even prevents GVHD. Ex vivo–expanded CD4+CD25+ regulatory T cells obtained after stimulation by allogeneic recipient-type antigen-presenting cells can also modulate GVHD. Thus, CD4+CD25+ regulatory T cells represent a new therapeutic tool for controlling GVHD in allogeneic HSCT. More generally, these results outline the tremendous potential of regulatory T cells as therapeutics.


Blood ◽  
2013 ◽  
Vol 122 (13) ◽  
pp. 2251-2261 ◽  
Author(s):  
Anandharaman Veerapathran ◽  
Joseph Pidala ◽  
Francisca Beato ◽  
Brian Betts ◽  
Jongphil Kim ◽  
...  

Key Points This is the first report about the detection of human Tregs specific for minor histocompatibility antigens. We detected, quantified, and cloned mHA-specific Tregs and expanded these potent Tregs in sufficient numbers for use in human transplantation.


Sign in / Sign up

Export Citation Format

Share Document