scholarly journals The Four Distal Tyrosines Are Required for LAT-dependent Signaling in FcεRI-mediated Mast Cell Activation

2003 ◽  
Vol 198 (5) ◽  
pp. 831-843 ◽  
Author(s):  
Shin-ichiroh Saitoh ◽  
Sandra Odom ◽  
Gregorio Gomez ◽  
Connie L. Sommers ◽  
Howard A. Young ◽  
...  

The linker for activation of T cells (LAT) is an adaptor protein critical for FcεRI-mediated mast cell activation. LAT is a substrate of the tyrosine kinases activated after TCR and FcεRI engagement. After phosphorylation of the cytosolic domain of LAT, multiple signaling molecules such as phospholipase C–γ1, Grb2, and Gads associate with phosphorylated LAT via their SH2 domains. The essential role of the four distal tyrosines in TCR-mediated signaling and T cell development has been demonstrated by experiments using LAT-deficient cell lines and genetically modified mice. To investigate the role of these four tyrosines of LAT in FcεRI-mediated mast cell activation, bone marrow–derived mast cells from LAT-deficient mice were infected with retroviral vectors designed to express wild-type or mutant LAT. Examination of bone marrow–derived mast cells expressing various tyrosine to phenylalanine mutants in LAT demonstrates a differential requirement for these different binding sites. In these studies, assays of biochemical pathways, degranulation, and cytokine and chemokine release were performed. Finally, the role of these tyrosines was also evaluated in vivo using genetically modified animals. Deletion of all four distal tyrosines, and in particular, loss of the primary phospholipase C–γ-binding tyrosine had a significant effect on antigen-induced histamine release.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2191-2191
Author(s):  
Veerendra Munugalavadla ◽  
Emily Sims ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Reuben Kapur

Abstract Mast cell activation plays a critical pathophysiologic role in asthma and allergy. A role for mast cell activation has also been described in multiple sclerosis, rheumatoid arthritis and coronary artery disease. In addition, these cells also play a prominent role in early phases of innate immunity to pathogenic bacteria. While several cytokines influence the growth, survival and maturation of mast cells; stem cell factor (SCF) and its interaction via the tyrosine kinase receptor, KIT is essential for normal mast cell development and function. However the intracellular signals that control mast cell growth, migration and maturation are not completely understood. In non-hematopoietic cells, Rho family GTPases are key regulators of many different biological processes including cell motility, growth, and differentiation. Cdc42, Rac and Rho are the most extensively studied members of this family. Although the role of Rac GTPases is becoming increasingly clear in mast cells and in hematopoietic cells in general, virtually nothing is known about the role of downstream effectors of Rho GTPases in these cells. RhoA and RhoC activate the serine/threonine protein kinases ROCKI and ROCKII. We show that both ROCKI and ROCKII are expressed in hematopoietic cells, including in bone marrow cells, splenocytes as well as in thymocytes. To determine the role of ROCK kinases in mast cells, we generated mice deficient in the expression of ROCKI. Here, we demonstrate that Rho-kinase ROCKI plays an essential role in regulating mast cell growth and maturation. We show that deficiency of ROCKI results in impaired maturation of bone marrow derived mast cells in response to IL-3 stimulation. Furthermore, the reduced maturation of ROCKI−/− mast cells is associated with reduced expression of KIT as well as reduced expression of the high affinity receptor for IgE at different stages of maturation (13% vs 7% at week1, 80% vs 52% at week2, and 93% vs 67% KIT/IgE receptor double positive cells at week3, n=3). KIT induced proliferation in response to SCF was also significantly reduced in ROCKI deficient mast cells, which was associated with reduced activation of MAPKinase Erk1 and Erk2. To test if the decreased growth in response to SCF was simply due to reduced KIT expression or due to cell intrinsic defects in ROCKI signaling, we isolated KIT positive WT and ROCKI−/− mast cells and measured growth in response to SCF and/or IL-3 stimulation by thymidine incorporation over a period of 24 and 48 hours. KIT positive ROCKI−/− mast cells showed reduced growth in response to SCF as well as in response to a combination of SCF and IL-3, suggesting a critical role of ROCKI in normal growth and maturation of mast cells. Since ROCK kinases also regulate migration in non-hematopoietic cells, we next examined the role of ROCKI in integrin (haptotactic) as well as in cytokine induced (chemotaxis) migration of mast cells. Mast cells deficient in ROCKI showed a 68% reduction in directional migration on fibronectin alone (64±7 [WT] vs 20±4, p<0.05) and a 31% reduction in the presence of SCF and fibronectin (181±16 [WT] vs 124±11 [ROCK1−/−], p<0.05), although no defects in SCF induced chemotaxis were observed. Taken together, our results identify ROCKI as a novel molecule that regulates growth, maturation and integrin-directed (haptotactic) migration of mast cells. Our results suggest that commercially available ROCK kinase inhibitors could prove to be useful small molecule inhibitors for treating diseases involving mast cells such as chronic inflammation and allergy.


2018 ◽  
Vol 11 (556) ◽  
pp. eaao4354 ◽  
Author(s):  
Ivana Halova ◽  
Monika Bambouskova ◽  
Lubica Draberova ◽  
Viktor Bugajev ◽  
Petr Draber

Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.


Blood ◽  
2013 ◽  
Vol 121 (8) ◽  
pp. 1285-1295 ◽  
Author(s):  
Sophie Georgin-Lavialle ◽  
Ludovic Lhermitte ◽  
Patrice Dubreuil ◽  
Marie-Olivia Chandesris ◽  
Olivier Hermine ◽  
...  

Abstract Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for < 1% of all mastocytosis. It may appear de novo or secondary to previous mastocytosis and shares more clinicopathologic aspects with systemic mastocytosis than with acute myeloid leukemia. Symptoms of mast cell activation—involvement of the liver, spleen, peritoneum, bones, and marrow—are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation.


2014 ◽  
Vol 211 (13) ◽  
pp. 2635-2649 ◽  
Author(s):  
Di Wang ◽  
Mingzhu Zheng ◽  
Yuanjun Qiu ◽  
Chuansheng Guo ◽  
Jian Ji ◽  
...  

Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in their degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. We show that the activation of mast cells is negatively regulated by the newly identified adaptor protein Tespa1. Loss of Tespa1 in mouse mast cells led to hyper-responsiveness to stimulation via FcεRI. Mice lacking Tespa1 also displayed increased sensitivity to IgE-mediated allergic responses. The dysregulated signaling in KO mast cells was associated with increased activation of Grb2-PLC-γ1-SLP-76 signaling within the LAT1 (linker for activation of T cells family, member 1) signalosome versus the LAT2 signalosome. Collectively, these findings show that Tespa1 orchestrates mast cell activation by tuning the balance of LAT1 and LAT2 signalosome assembly.


Blood ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 956-964 ◽  
Author(s):  
Jun Ho Lee ◽  
Young Mi Kim ◽  
Nam Wook Kim ◽  
Jie Wan Kim ◽  
Erk Her ◽  
...  

Abstract Mast cells are responsible for IgE-mediated allergic reactions. Phospholipase D1 (PLD1) and PLD2 regulate mast cell activation, but the mechanisms remain unclear. Here we show that PLD2 associates with and promotes activation of Syk, a key enzyme in mast cell activation. Antigen stimulation resulted in increased association and colocalization of Syk with PLD2 on the plasma membrane as indicated by coimmunoprecipitation and confocal microscopy. This association was dependent on tyrosine phosphorylation of Syk but not on PLD2 activity. In vitro, PLD2 interacted via its Phox homology (PX) domain with recombinant Syk to induce phosphorylation and activation of Syk. Furthermore, overexpression of PLD2 or catalytically inactive PLD2K758R enhanced antigen-induced phosphorylations of Syk and its downstream targets, the adaptor proteins LAT and SLP-76, while expression of a PLD2 siRNA blocked these phosphorylations. Apparently, the interaction of PLD2 with Syk is an early critical event in the activation of mast cells.


2015 ◽  
Vol 93 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Jung Kuk Kim ◽  
Young-Kyo Seo ◽  
Sehoon Park ◽  
Soo-Ah Park ◽  
Seyoung Lim ◽  
...  

Mast cells are responsible for IgE-mediated allergic responses through the secretion of various inflammatory cytokines and mediators. Therefore, the pharmacological regulation of mast cell activation is an important goal in the development of novel anti-allergic drugs. In this study, we found that spiraeoside (SP) inhibits mast cell activation and allergic responses in vivo. SP dose-dependently inhibited the degranulation induced by IgE-antigen (Ag) stimulation in RBL-2H3 mast cells without cytotoxic effects. At the molecular level, SP reduced the Ag-induced phosphorylation and subsequent activation of phospholipase C-γ2 (PLC-γ2). Moreover, SP inhibited the phosphorylation of spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and downstream MAPKs, such as ERK1/2, p38, and JNK, eventually attenuating expression of TNF-α and IL-4. Finally, we found that SP significantly inhibited IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. Taken together, our results strongly suggest that SP suppresses IgE-mediated mast cell activation and allergic responses by inhibiting Lyn-induced PLC-γ2/MAPK signaling in mast cells.


2000 ◽  
Vol 92 (4) ◽  
pp. 1074-1081 ◽  
Author(s):  
Mette Veien ◽  
Fania Szlam ◽  
Jeannine T. Holden ◽  
Koji Yamaguchi ◽  
Donald D. Denson ◽  
...  

Background If mast cells are stimulated they release multiple mediators that delineate markers for immunologic and nonimmunologic reactions; histamine and tryptase are the two best known. Although histamine can be assayed in plasma, it is a nonspecific marker with a very short half-life. Tryptase has a longer half-life, but its release has not been proven to be specific for anaphylaxis. The authors investigated the mechanisms of nonimmunologic histamine release from human cutaneous mast cells to understand the mechanisms of mediator release and to determine whether tryptase was specific for allergic mediated activation. Methods Dispersed mast cell suspensions isolated from neonatal foreskins underwent challenge with vancomycin, calcium ionophore A23187, morphine, and atracurium, and histamine tryptase release was measured. The effects of calcium and magnesium, along with phospholipase C and phospholipase A2 inhibitors, also were investigated. Results Tryptase and histamine both were released by the known nonimmunologic stimuli (pharmacologic agents used in the current study; r2 = 0.6). Furthermore, vancomycin- and atracurium-induced histamine release was calcium dependent. Phospholipase C and phospholipase A2 inhibitors decreased vancomycin-induced histamine release, but not calcium ionophore A23187-induced release. Conclusions Tryptase is not a specific marker of mast cell activation (ie., anaphylaxis), and signaling mechanisms for mast cell activation involve activation of phospholipase C and phospholipase A2 pathways that are also involved in other cellular activation mechanisms.


2004 ◽  
Vol 24 (23) ◽  
pp. 10277-10288 ◽  
Author(s):  
Raja Rajeswari Sivalenka ◽  
Rolf Jessberger

ABSTRACT SWAP-70, an unusual phosphatidylinositol-3-kinase-dependent protein that interacts with the RhoGTPase Rac, is highly expressed in mast cells. Cultured bone marrow mast cells (BMMC) from SWAP-70−/− mice are reduced in FcεRI-triggered degranulation. This report describes the hitherto-unknown role of SWAP-70 in c-kit receptor signaling, a key proliferation and differentiation pathway in mast cells. Consistent with the role of Rac in cell motility and regulation of the actin cytoskeleton, mutant cells show abnormal actin rearrangements and are deficient in migration in vitro and in vivo. SWAP-70−/− BMMC are impaired in calcium flux, in proper translocation and activity of Akt kinase (required for mast cell activation and survival), and in translocation of Rac1 and Rac2 upon c-kit stimulation. Adhesion to fibronectin is reduced, but homotypic cell association induced through c-kit is strongly increased in SWAP-70−/− BMMC. Homotypic association requires extracellular Ca2+ and depends on the integrin αLβ2 (LFA-1). ERK is hyperactivated upon c-kit signaling in adherent and dispersed mutant cells. Together, we suggest that SWAP-70 is an important regulator of specific effector pathways in c-kit signaling, including mast cell activation, migration, and cell adhesion.


1998 ◽  
Vol 274 (5) ◽  
pp. G832-G839 ◽  
Author(s):  
Aletta D. Kraneveld ◽  
Thea Muis ◽  
Andries S. Koster ◽  
Frans P. Nijkamp

Previously, it was shown that depletion and stabilization of the mucosal mast cell around the time of challenge were very effective in reducing delayed-type hypersensitivity (DTH) reactions in the small intestine of the rat. The role of mucosal mast cells in the early component of intestinal DTH reaction was further investigated in this study. In vivo small intestinal vascular leakage and serum levels of rat mast cell protease II (RMCP II) were determined within 1 h after intragastric challenge of rats that had been sensitized with dinitrobenzene 5 days before. A separate group of rats was used to study vasopermeability in isolated vascularly perfused small intestine after in vitro challenge. To investigate the effects of mast cell stabilization on the early events of the DTH reaction, doxantrazole was used. The influence of sensory nerves was studied by means of neonatal capsaicin-induced depletion of sensory neuropeptides. Within 1 h after challenge, a significant increase in vascular permeability was found in vivo as well as in vitro. This was associated with a DTH-specific increase in RMCP II in the serum, indicating mucosal mast cell activation. In addition, doxantrazole treatment and caspaicin pretreatment resulted in a significant inhibition of the DTH-induced vascular leakage and an increase in serum RMCP II. These findings are consistent with an important role for mucosal mast cells in early vascular leakage changes of intestinal DTH reactions. In addition, sensory nervous control of mucosal mast cell activation early after challenge is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document