scholarly journals Mutation of the phospholipase C-γ1–binding site of LAT affects both positive and negative thymocyte selection

2005 ◽  
Vol 201 (7) ◽  
pp. 1125-1134 ◽  
Author(s):  
Connie L. Sommers ◽  
Jan Lee ◽  
Kevin L. Steiner ◽  
Jordan M. Gurson ◽  
Corinne L. DePersis ◽  
...  

Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8hi HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus.

2004 ◽  
Vol 200 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Y. Jeffrey Chiang ◽  
Connie L. Sommers ◽  
Martha S. Jordan ◽  
Hua Gu ◽  
Lawrence E. Samelson ◽  
...  

c-Cbl is an adaptor protein that negatively regulates signal transduction events involved in thymic-positive selection. To further characterize the function of c-Cbl in T cell development, we analyzed the effect of c-Cbl inactivation in mice deficient in the scaffolding molecule SLP-76. SLP-76–deficient mice show a high frequency of neonatal lethality; and in surviving mice, T cell development is blocked at the DN3 stage. Inactivation of c-cbl completely reversed the neonatal lethality seen in SLP-76–deficient mice and partially reversed the T cell development arrest in these mice. SLP-76−/− Cbl−/− mice exhibited marked expansion of polarized T helper type (Th)1 and Th2 cell peripheral CD4+ T cells, lymphoid infiltrates of parenchymal organs, and premature death. This rescue of T cell development is T cell receptor dependent because it does not occur in recombination activating gene 2−/− SLP-76−/− Cbl−/− triple knockout mice. Analysis of the signal transduction properties of SLP-76−/− Cbl−/− T cells reveals a novel SLP-76– and linker for activation of T cells–independent pathway of extracellular signal–regulated kinase activation, which is normally down-regulated by c-Cbl.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2174-2174
Author(s):  
James D. Phelan ◽  
Ingrid Saba ◽  
Chinavenmeni S. Velu ◽  
Tarik Moroy ◽  
H. Leighton Grimes

Abstract Abstract 2174 Growth factor independent-1 (Gfi1) is a zinc finger transcriptional repressor protein originally identified in a rodent model of T-cell leukemia. Gfi1 deficient mice have defects in T cell development and a moderate loss of thymic cellularity. In Drosophila, orthologs of Notch1 and Gfi1 cooperate to specify embryo sensory organ precursors. Given the established requirement for Notch1 in T cell specification and development as well as the functional relationship of Notch and Gfi1 orthologs in Drosophila genetics, we investigated the ability of Gfi1 and Notch to cooperate in T-cell development. Utilizing transgenic mice in which the expression of Cre recombinase is controlled by the proximal Lck promoter (LckCre) to both activate intracellular Notch1 (ICN) while simultaneously deleting Gfi1, we demonstrate that T cells overexpressing ICN require Gfi1 for their survival and proper integration of ICN signaling. First, we validated our approach by showing that Lck-Cre-mediated deletion of Gfi1 alleles (Gfi1flox/-) or activation of ICN expression (Rosa26lox-stop-loxICN ires eGFP, “RosaICN”) lead to expected phenotypes. We next examined the consequences of ICN activation with simultaneous deletion of Gfi1. Whereas inducible deletion of Gfi1 alone decreases thymic cellularity by ∼4-fold, Gfi1 deletion coupled with ICN activation leads to complete thymic involution with a 14-fold reduction in total T cell numbers (p<0.0001). To determine whether developmental context controlled this interaction, we used a series of temporally regulated T cell promoters to drive Cre expression. In addition to targeting thymocytes before TCRβ-selection with Lck-Cre, we also examined CD4-Cre (deleting after TCRβ-selection), as well as the distal Lck promoter-Cre (deleting after negative selection). Notably, CD4-Cre mediated activation of ICN and deletion of Gfi1 results in an ∼9-fold reduction in thymocyte numbers, similar to proximal Lck-Cre. However, the requirement for Gfi1 in ICN-expressing cells is not global, in that distal Lck-Cre mediated deletion in post-negative selection thymocytes revealed normal cell numbers. Variation in Notch signaling defects may explain the profound differences in cellularity observed between deleting Gfi1 early verses late in T cell development. We limited one allele of Gfi1 and examined the transcriptional effect upon ICN target genes. First, FACS sorted DN3 thymocytes (CD4−, CD8−, CD44−, CD25+) from proximal LckCre+RosaICNGfi1f/+ transgenic mice, showed that a full one-third of all ICN-activated genes are differentially regulated upon the loss of a single copy of Gfi1. In contrast, splenic T cells from distal Lck-iCre+RosaICNGfi1f/+, display an equivalent expression level of many Notch1 target genes as their Gfi1+/+ littermate controls (dLck-iCre+RosaICNGfi1+/+). Moreover, these Notch signaling defects do not appear to require supraphysiological levels of activated ICN as evidenced by dysregulated endogenous Notch1 target gene activation in Gfi1−/− mice, including FACS sorted DN1 thymocytes and early bone marrow progenitors. Finally, this defect is cell autonomous in that Gfi1−/− early thymic progenitors do not develop on OP9-DL1 stroma cells whereas their WT littermates develop into DN3 T cells within 6 days. Therefore, our data both confirms and extends a functional genetic relationship between Notch1 and Gfi1 from fruit fly to mammalian lymphocyte development. Furthermore, our data suggests that Gfi1−/− developing thymocytes are incapable of correctly interpreting Notch signals, which ultimately leads to their death. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 203 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Surapong Koonpaew ◽  
Shudan Shen ◽  
Lawrence Flowers ◽  
Weiguo Zhang

Engagement of the T cell receptor for antigen (TCR) induces formation of signaling complexes mediated through the transmembrane adaptor protein, the linker for activation of T cells (LAT). LAT plays an important role in T cell development, activation, and homeostasis. A knock-in mutation at Tyr136, which is the phospholipase C (PLC)-γ1–binding site in LAT, leads to a severe autoimmune disease in mice. In this study, we show that CD4+CD25+ T reg cells that expressed Foxp3 transcription factor were nearly absent in both thymus and peripheral lymphoid organs of LATY136F mice. This defect was not a result of the autoimmune environment as LATY136F T reg cells also failed to develop in healthy LAT−/− mice that received mixed wild-type and LATY136F bone marrow cells. Moreover, adoptive transfer of normal CD4+CD25+ T reg cells protected neonatal LATY136F mice from developing this disease. These T reg cells effectively controlled expansion of CD4+ T cells in LATY136F mice likely via granzymes and/or TGF-β–mediated suppression. Furthermore, ectopic expression of Foxp3 conferred a suppressive function in LATY136F T cells. Our data indicate that the LAT–PLC-γ1 interaction plays a critical role in Foxp3 expression and the development of CD4+CD25+ T reg cells


1995 ◽  
Vol 181 (2) ◽  
pp. 805-810 ◽  
Author(s):  
B L Hsu ◽  
B D Evavold ◽  
P M Allen

T cells potentially encounter numerous endogenous peptides during selection in the thymus and in the periphery. We examined the impact of an endogenous peptide on in vivo T cell development, using a TCR transgenic mouse model based on a hemoglobin-specific T cell clone. In these mice, the transgenic beta chains paired with endogenous alpha chains. This led to a serendipitous primary reactivity to Ser69 peptide, an altered peptide ligand of the Hbd (64-76) epitope of the parent clone. Two Ser69-reactive T cell populations were identified. A smaller population of the Ser69-reactive T cells responded both to Ser69 and Hbd (64-76). A majority reacted only to Ser69, and not to Hbd(64-76); in fact, Hbd(64-76) was a specific TCR antagonist for these Ser69-only-reactive T cells. Thus, in this unique experimental system, Ser69 became an agonist, and Hbd (64-76) was an antagonist. Endogenous presentation of the antagonist ligand in the thymus selectively eliminated the high-avidity cells, while sparing low-avidity cells in the Ser69-reactive T cell repertoire. These results highlight how specificity guides developing T cells through a network of ligands and indicate that the endogenous peptide pool has a profound effect on T cell development and repertoire.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 657-657
Author(s):  
Sayed Shahabuddin Hoseini ◽  
Martin Hapke ◽  
Jessica Herbst ◽  
Dirk Wedekind ◽  
Rolf Baumann ◽  
...  

Abstract BACKGROUND: The co-transplantation of hematopoietic stem cells (HS) with those that have been engineered to express tumor-reactive T cell receptors (TCRs) and differentiated into precursor T cells (preTs) may optimize tumor reduction. Since expression of potentially self-(tumor-) reactive TCRs will lead to negative selection upon thymic maturation, we investigated whether preTs forced to express a leukemia-reactive TCR under the control of a tetracycline-inducible promoter would allow timely controlled TCR expression thereby avoiding thymic negative selection. METHODS: Using lentiviral vectors, murine LSK cells were engineered to express a Tetracycline-inducible TCR directed against a surrogate leukemia antigen. TCR-transduced LSK cells were co-cultured on T cell development-supporting OP9-DL1 cells to produce preTs. Lethally-irradiated B6/NCrl recipients received syngeneic T cell-depleted bone marrow and 8 × 106 syngeneic or allogeneic (B10.A) TCR-engineered preTs. An otherwise lethal leukemia cell (C1498) challenge was given 28 days later. RESULTS: After in vivo maturation and gene induction up to 70% leukemia free survival was achieved in recipients of syngeneic TCR-transduced preTs (p<0.001) as shown in figure 1A. Importantly, transfer of allogeneic gene-manipulated preTs increased the survival of recipients (p<0.05) without inducing graft versus host disease (GVHD). Non-transduced preTs provided significantly lower leukemia protection being not significantly superior to the PBS controls. The progenies of engineered preTs gave rise to effector and central memory cells providing protection even after repeated leukemia challenge (Figure 1B and 1C). In vitro transduction and consecutive expansion of mature T cells required at least 40 × 106 cells/recipient to mediate similar anti-leukemia efficacy, risking the development of severe GVHD if of mismatched origin, and providing no long-term protection. Importantly, while transgene induction starting immediately after transplant forced CD8+ T cell development and was required to obtain a mature T cell subset of targeted specificity, late induction favored CD4 differentiation and failed to produce a leukemia-reactive population due to missing thymic positive selection. CONCLUSION: Co-transplanting TCR gene-engineered preTs is of high clinical relevance since small numbers of even mismatched HS can be transduced at a reasonable cost, expanded in vitro, stored if needed, and provide potent and long lasting leukemia protection. Figure 1 Figure 1. Co-transplantation of engineered preTs provides potent long-lasting anti-leukemia effects upon TCR-induction in vivo. (A) Lethally-irradiated B6 mice received syngeneic TCDBM cells and either non-transduced or TCR gene-transduced preTs. Doxycycline was given starting the day of transplantation. One month later, 1.2 x 106 C1498-OVA leukemia cells were injected via tail vein. Controls did not receive preTs. n = 10 to 15 per group. (B) Surviving mice of the co-transplantation experiments were re-challenged with C1498-OVA leukemia three months after the first challenge. Age matched non-transplanted mice were used as controls. Pooled data of two independent transplantations (n = 10) are shown. (C) 95 days after the second challenge, spleens of surviving animals were harvested (n = 4) and analyzed for the expression of T cell memory markers on the progenies of co-transplanted preTs. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 193 (7) ◽  
pp. 815-826 ◽  
Author(s):  
Christian Schmedt ◽  
Alexander Tarakhovsky

The deletion of COOH-terminal Src kinase (Csk), a negative regulator of Src family protein tyrosine kinases (PTKs), in immature thymocytes results in the development of α/β T lineage cells in T cell receptor (TCR) β-deficient or recombination activating gene (rag)-1–deficient mice. The function of Csk as a repressor of Lck and Fyn activity suggests activation of these PTKs is solely responsible for the phenotype observed in csk-deficient T lineage cells. We provide genetic evidence for this notion as α/β T cell development is blocked in lck−/−fyn−/− csk-deficient mice. It remains unclear whether activation of Lck and Fyn in the absence of Csk uncouples α/β T cell development entirely from engagement of surface-expressed receptors. We show that in mice expressing the α/β TCR on csk-deficient thymocytes, positive selection is biased towards the CD4 lineage and does not require the presence of major histocompatibility complex (MHC) class I and II. Furthermore, the introduction of an MHC class I–restricted transgenic TCR into a csk-deficient background results in the development of mainly CD4 T cells carrying the transgenic TCR both in selecting and nonselecting MHC background. Thus, TCR–MHC interactions have no impact on positive selection and commitment to the CD4 lineage in the absence of Csk. However, TCR-mediated negative selection of csk-deficient, TCR transgenic cells is normal. These data suggest a differential involvement of the Csk-mediated regulation of Src family PTKs in positive and negative selection of developing thymocytes.


2018 ◽  
Vol 46 (4) ◽  
pp. 441-449
Author(s):  
Sowmya Angusamy ◽  
Tamer Mansour ◽  
Mohammed Abdulmageed ◽  
Rachel Han ◽  
Brian C. Schutte ◽  
...  

Abstract Background: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. Methods: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. Results: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. Conclusions: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


2009 ◽  
Vol 30 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Wen Qing Li ◽  
Tad Guszczynski ◽  
Julie A. Hixon ◽  
Scott K. Durum

ABSTRACT Interleukin-7 (IL-7) is critical for T-cell development and peripheral T-cell homeostasis. The survival of pro-T cells and mature T cells requires IL-7. The survival function of IL-7 is accomplished partly through induction of the antiapoptotic protein Bcl-2 and inhibition of proapoptotic proteins Bax and Bad. We show here that the proapoptotic protein Bim, a BH3-only protein belonging to the Bcl-2 family, also plays a role in peripheral T-cell survival. Deletion of Bim partially protected an IL-7-dependent T-cell line and peripheral T cells, especially cells with an effector memory phenotype, from IL-7 deprivation. However, T-cell development in the thymus was not restored in IL-7−/− Rag2−/− mice reconstituted with Bim−/− bone marrow. IL-7 withdrawal altered neither the intracellular location of Bim, which was constitutively mitochondrial, nor its association with Bcl-2; however, a reduction in its association with the prosurvival protein Mcl-1 was observed. IL-7 withdrawal did not increase Bim mRNA or protein expression but did induce changes in the isoelectric point of BimEL and its reactivity with an antiphosphoserine antibody. Our findings suggest that the maintenance of peripheral T cells by IL-7 occurs partly through inhibition of Bim activity at the posttranslational level.


2006 ◽  
Vol 26 (3) ◽  
pp. 789-809 ◽  
Author(s):  
Lawryn H. Kasper ◽  
Tomofusa Fukuyama ◽  
Michelle A. Biesen ◽  
Fayçal Boussouar ◽  
Caili Tong ◽  
...  

ABSTRACT The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300 flox ) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300 flox and a CBP conditional knockout allele (CBP flox ) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4− CD8− double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.


Sign in / Sign up

Export Citation Format

Share Document