scholarly journals Dendritic cell maturation by innate lymphocytes

2005 ◽  
Vol 202 (2) ◽  
pp. 203-207 ◽  
Author(s):  
Christian Münz ◽  
Ralph M. Steinman ◽  
Shin-ichiro Fujii

Pathogen recognition by Toll-like receptors (TLRs) on dendritic cells (DCs) leads to DC maturation and the initiation of adaptive immunity. Recent studies have shown that innate lymphocytes—natural killer (NK), natural killer T (NKT), and γδ T cells—also trigger DC maturation. This interaction in turn expands and activates innate lymphocytes and initiates adaptive T cell immunity. Here, we comment on the evidence that these pathways are TLR independent and have the potential to respond to infection, malignancy, and immunotherapy.

2014 ◽  
Vol 7 (3) ◽  
pp. 260-274 ◽  
Author(s):  
Sudhanshu Shekhar ◽  
Antony George Joyee ◽  
Xiaoling Gao ◽  
Ying Peng ◽  
Shuhe Wang ◽  
...  

2003 ◽  
Vol 198 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Shin-ichiro Fujii ◽  
Kanako Shimizu ◽  
Caroline Smith ◽  
Laura Bonifaz ◽  
Ralph M. Steinman

The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of α-galactosylceramide (αGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-γ production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by αGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of αGalCer, mice were given αGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-γ producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, αGalCer, NKT, or NK cells. Therefore a single dose of αGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


2020 ◽  
Author(s):  
Yunkai Wang ◽  
Jie Wang ◽  
Lu Han ◽  
Yun Li Shen ◽  
Jie Yun You ◽  
...  

Abstract Background: Triggering receptor expressed on myeloid cells (TREM)-1is identified as a major upstream proatherogenic receptor. However, the cellular processes modulated by TREM-1 in the development of atherosclerosis and plaque destabilization has not been fully elucidated. In this study, we investigated the effects of TREM-1 on dendritic cell maturation and dendritic cell–mediated T-cell activation induced by oxidized low-density lipoprotein (ox-LDL) in atherogenesis. Methods: Human peripheral blood monocytes were differentiated to dendritic cells and stimulated by ox-LDL. Naive autologous T cells were co-cultured with pretreated dendritic cells.The expressionof TREM-1 and the production of inflammatory cytokines were assessed by real-time PCR, western blot and ELISA.The expression of immune factors was determined with FACS to evaluate dendritic cell maturation and T-cell activation. Results: Stimulation with ox-LDL promoted dendritic cell maturation, TREM-1 expression and T-cell activation, and exposure of T cells to ox-LDL-treated dendritic cells induced production of interferon-γ and IL-17. Blocking TREM-1 suppressed dendritic cell maturation with low expression of CD1a, CD40, CD86 and HLA-DR, decreased production of TNF-α, IL-1β, IL-6 and MCP-1, and increased secretion of TGF-β and IL-10. In addition, stimulation of ox-LDL induced miR-155, miR-27, Let-7c and miR-185 expression, whereas inhibition of TREM-1 repressed miRNA-155. Silencing TREM-1 or miRNA-155 increased SOCS1 expression induced by ox-LDL. T cells derived from carotid atherosclerotic plaques or healthy individuals showed similar result patterns. Conclusion: These data suggest that TREM-1 modulates maturation of dendritic cells and activation of plaque T cells induced by ox-LDL, a pivotal player in atherogenesis.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A39.1-A39
Author(s):  
M Arabpour ◽  
S Paul ◽  
R Kiffin ◽  
HG Wiktorin ◽  
K Hellstrand ◽  
...  

BackgroundSpecific targeting of anti-cancer vaccines to dendritic cells (DCs) has been shown to mount efficient immune responses against tumor cells. Classical CD103+dendritic cells (also called cDC1) have an inherent ability to cross-present antigens to CD8+ cytotoxic T cells. Here we have explored an anti-tumor vaccine that specifically targets cDC1 cells for protection against and elimination of metastatic melanoma. The vaccine contains the cholera toxin A1 subunit (CTA1) adjuvant and is targeted to cDC1 cells through an anti-CD103 single chain antibody (CD103 scFv).Material and MethodsC57BL/6 mice were injected with wild type or ovalbumin (OVA) expressing B16 melanoma cells either subcutaneously (s.c.) to establish solid tumors, or intravenously (i.v.) to allow the formation of pulmonary metastases. Before or after establishment of tumors, mice were intra-nasally inoculated with a vaccine composed of a CD103 scFv element fused to the adjuvant CTA1 and the MHC I H2kd-restricted OVA epitope SIINFEKL together with the MHC II H2kd-restricted OVA epitope p323 or just the p323 peptide alone (i.e. CTA1-SIINFEKL-p323-CD103 and CTA1-p323-CD103, respectively). Control mice were inoculated with PBS. The growth of solid tumors was carefully monitored and the development of pulmonary metastases was determined 2–3 weeks after tumor cell injection. In addition, antigen-specific T cell immunity following intranasal immunization was evaluated.ResultsTargeting MHC I and MHC II tumor cell epitopes to cDC1, via CD103 ScFv, in conjunction with the CTA1 adjuvant elicited strong tumor specific and protective CD8+ T cell responses as well as CD4+ T cell immunity. Immunization with the CTA1-SIINFEKL-p323-CD103 vaccine significantly reduced the growth of established solid B16F1-OVA melanomas (P<0.001) and potently prevented metastasis formation (P<0.01). Control immunizations with the CTA1-p323-CD103 vaccine tended to reduce metastasis, but tumor-specific CD8+ T cells were required for full therapeutic protection.ConclusionTargeting tumor specific CD8+ T cell epitopes to cDC1, in the context of a powerful adjuvant such as CTA1, leads to the development of efficient anti-tumor immune responses. Our results point towards the utility of cDC1-targeted vaccines in the treatment of established tumors or as a means to prevent metastasis formation.Disclosure InformationM. Arabpour: None. S. Paul: None. R. Kiffin: None. H.G. Wiktorin: None. K. Hellstrand: None. N. Lycke: None. A. Martner: None.


1994 ◽  
Vol 4 (3) ◽  
pp. 246-248 ◽  
Author(s):  
David H. Raulet

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2577-2577
Author(s):  
I. M. Svane ◽  
A. E. Pedersen ◽  
H. E. Johnsen ◽  
D. Nielsen ◽  
C. Kamby ◽  
...  

2577 Background: p53 mutations and over-expression are found in up to 30% of breast cancers and are associated with poor prognosis following conventional therapy. Peptides derived from over-expressed p53 protein are presented by class I MHC molecules and may act as tumor-associated epitopes and thereby as target for vaccination. Due to the diversity of p53 mutations, immunogenic peptides representing wild-type sequences are preferable as basis for a broad-spectrum p53-targeting cancer vaccine. Furthermore, single amino acid modified p53 peptides can increase HLA-A2 binding capacity and induction of p53-specific cytotoxic T cells. Methods: In a phase I-II trial a total of 32 HLA-A2+ patients with progressive advanced breast cancer were treated with autologous dendritic cells (DC) loaded with six HLA-A2 binding peptides: 3 wild-type [p5365–73 RMPEAAPPV, p53264–272 LLGRNSFEV, p53187–197 GLAPPQHLIRV], 3 modified [p53149–157 SLPPPGTRV, p53139–147 KLCPVQLWV, p53103–111 YLGSYGFRL]. Each patient received up to 10 sc vaccinations with 5x106 p53-peptide loaded DC with 1–2 weeks interval. Concomitantly, 6 MIU/m2 IL-2 was administered s.c. Results: Clinical benefit, mainly as SD or minor regression was obtained in 12 out of 32 patients. Using ELISPOT assay vaccine induced p53 peptide specific T cells were demonstrated in 7/11 of the analyzed response patients but only in 4/14 patients with continued progression, in contrast, 2 patients in this group had reduction of pre-existing reactivity. In most cases T cells specific for several of the six p53 peptides were found and no single p53-epitope was predominant. SD was associated with cessation of serum LDH rise and reduction in serum IL-6 level. In addition more response patients had significant p53 tumor expression. T cell immunity was further explored by dextramer technology and CD107 cytotoxicity assay, and serum YKL-40 was measured and compared to clinical response. Conclusions: A significant fraction of breast cancer patients with progressive disease obtained disease stabilization during treatment with p53-peptide loaded DCs. Induction of p53 specific immunity and changes in disease markers support the clinical results. No significant financial relationships to disclose.


2002 ◽  
Vol 76 (10) ◽  
pp. 5062-5070 ◽  
Author(s):  
Pablo Sarobe ◽  
Juan José Lasarte ◽  
Noelia Casares ◽  
Ascensión López-Díaz de Cerio ◽  
Elena Baixeras ◽  
...  

ABSTRACT Patients infected with hepatitis C virus (HCV) have an impaired response against HCV antigens while keeping immune competence for other antigens. We hypothesized that expression of HCV proteins in infected dendritic cells (DC) might impair their antigen-presenting function, leading to a defective anti-HCV T-cell immunity. To test this hypothesis, DC from normal donors were transduced with an adenovirus coding for HCV core and E1 proteins and these cells (DC-CE1) were used to stimulate T lymphocytes. DC-CE1 were poor stimulators of allogeneic reactions and of autologous primary and secondary proliferative responses. Autologous T cells stimulated with DC-CE1 exhibited a pattern of incomplete activation characterized by enhanced CD25 expression but reduced interleukin 2 production. The same pattern of incomplete lymphocyte activation was observed in CD4+ T cells responding to HCV core in patients with chronic HCV infection. However, CD4+ response to HCV core was normal in patients who cleared HCV after alpha interferon therapy. Moreover, a normal CD4+ response to tetanus toxoid was found in both chronic HCV carriers and patients who had eliminated the infection. Our results suggest that expression of HCV structural antigens in infected DC disturbs their antigen-presenting function, leading to incomplete activation of anti-HCV-specific T cells and chronicity of infection. However, presentation of unrelated antigens by noninfected DC would allow normal T-cell immunity to other pathogens.


Sign in / Sign up

Export Citation Format

Share Document