scholarly journals Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor–mediated inflammatory responses

2016 ◽  
Vol 214 (1) ◽  
pp. 227-244 ◽  
Author(s):  
Andreas Westphal ◽  
Weijia Cheng ◽  
Jinbo Yu ◽  
Guntram Grassl ◽  
Martina Krautkrämer ◽  
...  

Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms.

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31341 ◽  
Author(s):  
Guilhem Richard ◽  
Calin Belta ◽  
A. Agung Julius ◽  
Salomon Amar

2014 ◽  
Vol 50 (3) ◽  
pp. 797-810 ◽  
Author(s):  
Fatemeh Hemmati ◽  
Rasoul Ghasemi ◽  
Norlinah Mohamed Ibrahim ◽  
Leila Dargahi ◽  
Zahurin Mohamed ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2054
Author(s):  
Monika Olech ◽  
Katarzyna Ropka-Molik ◽  
Tomasz Szmatoła ◽  
Katarzyna Piórkowska ◽  
Jacek Kuźmak

Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.


2005 ◽  
Vol 66 (8) ◽  
pp. 99
Author(s):  
D. Olga McDaniel ◽  
Lee Y. Tee ◽  
Kenneth Vick ◽  
Christine Toevs ◽  
Laura Vick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document