scholarly journals SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease

2019 ◽  
Vol 216 (4) ◽  
pp. 743-756 ◽  
Author(s):  
Caihong Zhu ◽  
Bei Li ◽  
Karl Frontzek ◽  
Yingjun Liu ◽  
Adriano Aguzzi

SARM1 (sterile α and HEAT/armadillo motif–containing protein) is a member of the MyD88 (myeloid differentiation primary response gene 88) family, which mediates innate immune responses. Because inactivation of SARM1 prevents various forms of axonal degeneration, we tested whether it might protect against prion-induced neurotoxicity. Instead, we found that SARM1 deficiency exacerbates the progression of prion pathogenesis. This deleterious effect was not due to SARM1-dependent modulation of prion-induced neuroinflammation, since microglial activation, astrogliosis, and brain cytokine profiles were not altered by SARM1 deficiency. Whole-transcriptome analyses indicated that SARM1 deficiency led to strong, selective overexpression of the pro-apoptotic gene XAF1 (X-linked inhibitor of apoptosis-associated factor 1). Consequently, the activity of pro-apoptotic caspases and neuronal death were enhanced in prion-infected SARM1−/− mice. These results point to an unexpected function of SARM1 as a regulator of prion-induced neurodegeneration and suggest that XAF1 might constitute a therapeutic target in prion disease.

2018 ◽  
Author(s):  
Caihong Zhu ◽  
Bei Li ◽  
Karl Frontzek ◽  
Yingjun Liu ◽  
Adriano Aguzzi

AbstractSARM1 (sterile α and HEAT/armadillo motifs containing protein) is a member of the MyD88 (myeloid differentiation primary response gene 88) family which mediates innate immune responses. Because inactivation of SARM1 prevents various forms of axonal degeneration, we tested whether it might protect against prion-induced neurotoxicity. Instead, we found that SARM1 deficiency exacerbates the progression of prion pathogenesis. This deleterious effect was not due to SARM1-dependent modulation of prion-induced neuroinflammation, since microglial activation, astrogliosis and brain cytokine profiles were not altered by SARM1 deficiency. Whole-transcriptome analyses indicated that SARM1 deficiency led to strong, selective overexpression of the pro-apoptotic gene XAF1 (X-linked inhibitor of apoptosis-associated factor 1). Consequently, the activity of proapoptotic caspases and neuronal death were enhanced in prion-infected SARM1−/− mice. These results point to an unexpected function of SARM1 as a regulator of prion-induced neurodegeneration, and suggest that XAF1 might constitute a therapeutic target in prion disease.


2003 ◽  
Vol 199 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Sean E. Doyle ◽  
Ryan M. O'Connell ◽  
Gustavo A. Miranda ◽  
Sagar A. Vaidya ◽  
Edward K. Chow ◽  
...  

Toll-like receptor (TLR) signaling and phagocytosis are hallmarks of macrophage-mediated innate immune responses to bacterial infection. However, the relationship between these two processes is not well established. Our data indicate that TLR ligands specifically promote bacterial phagocytosis, in both murine and human cells, through induction of a phagocytic gene program. Importantly, TLR-induced phagocytosis of bacteria was found to be reliant on myeloid differentiation factor 88–dependent signaling through interleukin-1 receptor–associated kinase-4 and p38 leading to the up-regulation of scavenger receptors. Interestingly, individual TLRs promote phagocytosis to varying degrees with TLR9 being the strongest and TLR3 being the weakest inducer of this process. We also demonstrate that TLR ligands not only amplify the percentage of phagocytes uptaking Escherichia coli, but also increase the number of bacteria phagocytosed by individual macrophages. Taken together, our data describe an evolutionarily conserved mechanism by which TLRs can specifically promote phagocytic clearance of bacteria during infection.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document