scholarly journals STUDIES ON HOST-VIRUS INTERACTIONS IN THE CHICK EMBRYO-INFLUENZA VIRUS SYSTEM

1949 ◽  
Vol 90 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Werner Henle

Experiments have been reported on the propagation of influenza viruses in the allantoic membrane of the developing chick embryo during the first infectious cycle. After adsorption of the seed virus onto the host cells, only a small percentage of it remains demonstrable by infectivity titrations. This amount remains constant for 4 hours in the case of infection with PR8 virus, and for 6 hours in that of infection with Lee virus. Thereafter, a sharp rise in infectivity occurs 2 to 3 hours before liberation of the new generations of active virus into the allantoic fluid can be detected. Injection of homologous virus, inactivated by ultraviolet irradiation, following infection prevents or delays the production of virus in the tissues, depending to some extent upon the number of ID50 of active virus used as inoculum. The smaller the dose, the more pronounced the inhibitory effect. With increasing delay in the injection of the inhibitor, progressively more virus is produced and liberated 6 and 9 hours after infection with PR8 and Lee virus, respectively. Thus, production of virus may be interrupted by the homologous inhibitor when given up to 3 hours after infection with PR8, and up to4½ hours after infection with Lee virus. Since no increase in infectivity can bedetected during these 3 and 4½ hour periods in the tissues, it is suggested that influenza virus propagates in at least two major stages: first, non-infectious, immature virus material is produced which, subsequently, is converted into the fully active agent. Presumably the first step can be interrupted by the homologous inhibitor, while the second cannot. Heterologous irradiated virus, injected after infection of the tissue, exerts only a slight inhibitory effect on the production of virus.

1970 ◽  
Vol 68 (1) ◽  
pp. 151-158 ◽  
Author(s):  
R. D. Barry ◽  
Patricia Davies

SummaryThe isoquinoline compound UK 2054 prevents the uptake of influenza virus by susceptible cells. Pre-incubation of virus particles with 500μg./ml. UK 2054 at 37°C. for 2 hr. does not reduce virus infectivity. Host cells vary in their responsiveness to the inhibitory effect of UK 2054; virus multiplication is inhibited in chick allantoic cells by lower concentrations than those required to inhibit virus growth in chick embryo fibroblasts. The effectiveness of UK 2054 is reduced by the presence of serum.It is concluded that inhibition of influenza virus multiplication by UK2054 might result from interaction of the inhibitor with both virus and cells. Any direct combination between inhibitor and virus is completely reversible.


1954 ◽  
Vol 100 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Norman B. Finter ◽  
Oscar C. Liu ◽  
Melvin Lieberman ◽  
Werner Henle

The usefulness of the deembryonation technic has been analyzed as a tool in the study of various problems in the growth cycle of influenza virus in the entodermal cells of the allantoic of chick embryos. Various improvements in the deembryonation technic have been described. The method readily permits repeated sampling of the medium at various stages after infection (cumulative growth curves) or frequent exchanges of the medium (differential growth curve). However, the yield of infectious virus or of hemagglutinins is less than that observed in the intact chick embryo. The difference observed is greater than can be accounted for by the reduction in the available host cells and is assumed, therefore, to be due in part to interruption of blood and nutrient supply to the cells. This handicap can be overcome by the combined in ovo-deembryonation technic, in which deembryonation is performed at any desired time after infection of the intact chick embryo, and the medium is collected and analyzed after 1 to 3 hours of further incubation. The value of the technic is demonstrated by the fact that liberation of virus from infected cells can be detected earlier than in the intact egg. Furthermore, it continues at a nearly constant rate for many hours, thus proving to be erroneous previous inference which had been based upon in ovo experiments. The technic also permits readily the addition and subsequent removal of substances that might interfere with viral propagation. As an example a study was made of the effect of the receptor-destroying enzyme of V. cholerae (RDE) when added to the medium of eggs infected prior to deembryonation. By carefully grading the dose of virus and using an appropriate amount of RDE, one-step growth curves were obtained indicating that those cells not directly invaded by the seed virus were subsequently protected against infection by action of the enzyme. The smaller the amount of virus the less RDE was required in order to note a protective effect. With a decrease in the period of exposure to RDE regeneration of cell receptors became increasingly more apparent in that correspondingly greater amounts of virus were produced and liberated late in the incubation periods. These results confirmed and extended those reported by Stone. More extensive applications of these technics will be reported in subsequent papers of this series.


1949 ◽  
Vol 90 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Werner Henle

Upon injection of active influenza A or B virus into the allantoic cavity of the developing chick embryo, an average of only 70 per cent of the agent was adsorbed onto the tissue, as measured by the difference between the quantity of virus injected and that found free in the allantoic fluid of the injected eggs during the constant period. The degree of adsorption was similar, regardless of whether 109 or 102 ID50 of active virus was injected. Attempts to demonstrate the adsorbed virus in suspensions of the infected tissue met with partial success only in that not more than 1 to 5 per cent of the amount calculated to be adsorbed was actually found. All efforts to increase the yield of virus have failed. These results led to the suggestion that the seed virus, which participates in the propagation, becomes altered in such a way that it no longer may be demonstrated by infectivity titrations, whereas the active virus found represents superficially adsorbed virus, which does not multiply.


1947 ◽  
Vol 86 (5) ◽  
pp. 423-437 ◽  
Author(s):  
Werner Henle ◽  
Gertrude Henle ◽  
Evelyn B. Rosenberg

After allantoic injection of chick embryos with a known amount of influenza virus, the process of adsorption of the agent onto host cells and infection of them can be interrupted at a given time by the administration of large quantities of heterologous virus inactivated by irradiation. A sudden great increase in the amount of free virus in the allantoic fluid occurring after 6 hours in the case of the PR8 strain, and 9 hours in that of the Lee strain, indicates that the untreated virus associated with the host cells has multiplied. The length of the period preliminary to this increase remains the same even though the concentration of the original inoculum is varied over a wide range. Since administration of the irradiated virus leaves no susceptible host cells, because of the interference phenomenon, and further adsorption of active virus is minimized or entirely prevented, practically the entire new increment of virus can be found in the allantoic fluid and assayed; for every ID50 adsorbed about 50 ID50 are released. Homologous irradiated virus, on the other hand, when injected after infection of the allantoic sac, reduces the yield of virus to a more or less considerable extent. Some inhibitory effect can still be observed when the homologous irradiated virus is given several hours after infection. This effect is linked to the virus particle and destroyed by prolonged irradiation.


1966 ◽  
Vol 123 (2) ◽  
pp. 309-325 ◽  
Author(s):  
K. Marilyn Smart ◽  
Edwin D. Kilbourne

A comparative study was undertaken of the pathogenesis of infection of the allantoic sac of the chick embryo with three influenza viruses of differing virulence, and of the influence of hydrocortisone on the course of infection. Judged on the basis of earlier onset and greater degree of inflammatory response and diminished survival time of infected embryos, Mel. and Lee viruses were markedly more virulent than PR8, despite the earlier appearance of virus in PR8-infected embryos. Interferon appeared first and in greater quantity in the allantoic fluid of Lee-infected embryos and latest with PR8 infection. Thus, there was no correlation of avirulence and better interferon production with the viruses under study in the present system. Furthermore, evidence obtained suggested that Lee virus ("virulent") was most susceptible to interferon action, and also that viral synthesis in the chorioallantoic membrane with PR8 ("avirulent") persisted after the appearance of interferon. The injection of hydrocortisone within 2 hr of the initiation of infection delayed the synthesis of all three viruses; had no significant effect upon the inflammatory response; and transiently inhibited the synthesis of interferon, while prolonging the survival of Lee- and Mel.-infected embryos. Late administration of hydrocortisone suppresses both the inflammatory response and the production of interferon. Only in the case of Lee virus infection did hydrocortisone administration lead to augmentation of final yields of virus with the low infection multiplicity employed in the present experiments. It is postulated that Lee virus is a better inducer of interferon because its infectivity in vivo is more rapidly inactivated. As a consequence synthesis of Lee virus is more under the control of endogenous interferon than is the case with PR8 or Mel. virus. Therefore, inhibition of interferon synthesis with hydrocortisone has a greater influence on final yields of Lee virus.


1955 ◽  
Vol 101 (5) ◽  
pp. 493-506 ◽  
Author(s):  
Kurt Paucker ◽  
Werner Henle

An experimental analysis is here presented of the conditions that lead to the appearance of non-infectious hemagglutinins (NIHA) in the allantoic fluid of chick embryos injected with standard influenza virus (PR8 strain) which had been exposed to 37°C. in vitro for various periods of time. On progressive reduction of the infectivity of the undiluted inocula from about 109 to 103 ID50 (103.2 HA units) the yields of infectious virus in 24 hours decreased in straight correspondence 1 millionfold, but those of hemagglutinins only by a factor of 10. Thus the proportions of NIHA in the yields increased sharply but the total quantity obtained decreased gradually. The quantities of infectious virus produced per ID50 injected were the same throughout this range; i.e., between 50 and 100 ID50, regardless of increasing proportions of heat-inactivated virus in the seeds. This value agrees with previous estimates of yields under other conditions. Thus, initiation and completion of first cycles by the infectious virus remaining in the inocula were not, or at most, slightly inhibited. The inactivated virus, therefore, failed to establish immediate interference. It was capable, however, of holding the infectious process to one cycle. Upon 10-fold dilution of the seeds essentially similar results were obtained except that a slight loss in interfering activity could now be detected with an increase in exposure to 37°C. With further dilutions little or no interference was noted. The capacity to yield NIHA decreased slowly during exposure of the seeds to 37°C. over a period of 5 days, thereafter more rapidly. It could not be restored by addition of infectious virus. Furthermore, since NIHA was obtained when the seeds contained as little as 102 or 103 ID50, it is unlikely that it was derived from those cells which had adsorbed both infectious and inactivated seed virus. It is suggestive that multiple adsorption of inactivated virus particles per se will yield NIHA. The available information, as discussed, favors the view that the NIHA does not represent seed virus in some form but is newly produced.


1984 ◽  
Vol 93 (3) ◽  
pp. 609-620 ◽  
Author(s):  
M. S. Denyer ◽  
J. R. Crowther ◽  
R. C. Wardley ◽  
R. Burrows

SummaryThis paper describes a solid-phase microtitre plate enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to equine influenza viruses. Using egg-grown influenza viruses as the antigens attached to the solid phase, crossreactions were observed between an H7N7 equine virus (designated A1) and an H3N8 equine influenza virus (designated A2) when untreated antisera were tested. Absorption of antisera with egg-grown A/Porcine/Shope/1/33 influenza virus eliminated cross-reactive antibodies so that specific detection of anti-equine influenza A1 or A2 antibodies was possible.Examination of horse sera following vaccination with A1 and/or A2 isolates showed that antibodies were produced against antigen associated with egg allantoic fluid as well as against virus. Such antibodies were eliminated following the absorption of antisera with porcine influenza virus. Results using sera from horses with known vaccination histories confirmed that the ELISA preferentially detected antibodies homologous to the antigen attached to the solid phase and methods to evaluate the current serological state of individual horses by relating the titres of specific antibodies against equine influenza A1 and A2 isolates are shown. This ELISA provides a simple and rapid method of assessing specific antibodies from horse sera and offers advantages over the ‘routine’ HI and SRH assessments since it gives high precision, is economical of reagents and has the capacity to handle large numbers of serum samples.


1954 ◽  
Vol 99 (4) ◽  
pp. 321-342 ◽  
Author(s):  
David A. J. Tyrrell ◽  
Frank L. Horsfall

1. The hemagglutinating capacity, enzymic activity, and infectivity of several influenza viruses were destroyed by repeated freezing and thawing of dialyzed allantoic fluids containing them. 2. Influenza virus degraded by freezing and thawing, by treatment with 5 M urea, or by heating at 65°C. still combined with homologous antibody and was demonstrable by blocking of the hemagglutination-inhibition and virus neutralization reactions. 3. After 50 cycles of freezing and thawing, much of the blocking antigen activity was not sedimented by centrifugation at 120,000 g for 2 hours, and electron microscopy showed complete disruption of the virus particles. So called soluble blocking antigen was obtained from four strains of influenza A, the Lee strain of influenza B, mumps, and Newcastle disease viruses. 4. Soluble blocking antigens from influenza A viruses were highly strain-specific; gave little or no reaction in complement-fixation tests; stimulated but little antibody production in rabbits and did not induce immunity in mice; caused reactivation of infective virus in neutral mixtures of homologous virus and immune serum. 5. Repeatedly frozen and thawed influenza virus preparations did not interfere with the propagation of infective virus in the allantoic sac. The blocking antigen activity they contained was precipitated by half saturated ammonium sulfate, destroyed by trypsin, chymotrypsin, or heating at 56°C. for 30 minutes, but was unaffected by desoxyribonuclease or ribonuclease. 6. These findings are in accord with the view that soluble blocking antigen obtained from influenza virus particles on disruption by repeated freezing and thawing is protein in nature and represents the essential antigenic material of the intact virus.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Akikazu Sakudo ◽  
Naohiro Shimizu ◽  
Yuichiro Imanishi ◽  
Kazuyoshi Ikuta

We have recently treated with N2gas plasma and achieved inactivation of bacteria. However, the effect of N2gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2gas plasma.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Yang Li ◽  
Qi-Hao Liang ◽  
Meng-Meng Sun ◽  
Xu-Qing Tang ◽  
Ping Zhu

Exploring the genetic structure of influenza viruses attracts the attention in the field of molecular ecology and medical genetics, whose epidemics cause morbidity and mortality worldwide. The rapid variations in RNA strand and changes of protein structure of the virus result in low-accuracy subtyping identification and make it difficult to develop effective drugs and vaccine. This paper constructs the evolutionary structure of avian influenza virus system considering both hemagglutinin and neuraminidase protein fragments. An optimization model was established to determine the rational granularity of the virus system for exploring the intrinsic relationship among the subtypes based on the fuzzy hierarchical evaluation index. Thus, an algorithm was presented to extract the rational structure. Furthermore, to reduce the systematic and computational complexity, the granular signatures of virus system were identified based on the coarse-grained idea and then its performance was evaluated through a designed classifier. The results showed that the obtained virus signatures could approximate and reflect the whole avian influenza virus system, indicating that the proposed method could identify the effective virus signatures. Once a new molecular virus is detected, it is efficient to identify the homologous virus hierarchically.


Sign in / Sign up

Export Citation Format

Share Document