scholarly journals The relationship between depletion of intracellular Ca2+ stores and activation of Ca2+ current by muscarinic receptors in neuroblastoma cells.

1995 ◽  
Vol 106 (5) ◽  
pp. 975-993 ◽  
Author(s):  
C Mathes ◽  
S H Thompson

The relationship between the depletion of IP3-releasable intracellular Ca2+ stores and the activation of Ca(2+)-selective membrane current was determined during the stimulation of M1 muscarinic receptors in N1E-115 neuroblastoma cells. External Ca2+ is required for refilling Ca2+ stores and the voltage-independent, receptor-regulated Ca2+ current represents a significant Ca2+ source for refilling. The time course of Ca2+ store depletion was measured with fura-2 fluorescence imaging, and it was compared with the time course of Ca2+ current activation measured with nystatin patch voltage clamp. At the time of maximum current density (0.18 + .03 pA/pF; n = 48), the Ca2+ content of the IP3-releasable Ca2+ pool is reduced to 39 + 3% (n = 10) of its resting value. Calcium stores deplete rapidly, reaching a minimum Ca2+ content in 15-30 s. The activation of Ca2+ current is delayed by 10-15 s after the beginning of Ca2+ release and continues to gradually increase for nearly 60 s, long after Ca2+ release has peaked and subsided. The delay in the appearance of the current is consistent with the idea that the production and accumulation of a second messenger is the rate-limiting step in current activation. The time course of Ca2+ store depletion was also measured after adding thapsigargin to block intracellular Ca2+ ATPase. After 15 min in thapsigargin, IP3-releasable Ca2+ stores are depleted by > 90% and the Ca2+ current is maximal (0.19 + 0.05 pA/pF; n = 6). Intracellular loading with the Ca2+ buffer EGTA/AM (10 microM; 30 min) depletes IP3-releasable Ca2+ stores by between 25 and 50%, and it activates a voltage-independent inward current with properties similar to the current activated by agonist or thapsigargin. The current density after EGTA/AM loading (0.61 + 0.32 pA/pF; n = 4) is three times greater than the current density in response to agonist or thapsigargin. This could result from partial removal of Ca(2+)-dependent inactivation.

1994 ◽  
Vol 104 (1) ◽  
pp. 107-121 ◽  
Author(s):  
C Mathes ◽  
S H Thompson

The activation of muscarinic receptors in N1E-115 neuroblastoma cells elicits a voltage-independent calcium current. The current turns on slowly, reaches its maximum value approximately 45 s after applying the agonist, is sustained as long as agonist is present, and recovers by one half in approximately 10 s after washing the agonist away. The current density is 0.11 +/- 0.08 pA/pF (mean +/- SD; n = 12). It is absent in zero-Ca++ saline and reduced by Mn++ and Ba++. The I(V) curve characterizing the current has an extrapolated reversal potential > +40 mV. The calcium current is observed in cells heavily loaded with BAPTA indicating that the calcium entry pathway is not directly gated by calcium. In fura-2 experiments, we find that muscarinic activation causes an elevation of intracellular Ca++ that is due to both intracellular calcium release and calcium influx. The component of the signal that requires external Ca++ has the same time course as the receptor operated calcium current. Calcium influx measured in this way elevates (Ca++)i by 89 +/- 41 nM (n = 7). Thapsigargin, an inhibitor of Ca++/ATPase associated with the endoplasmic reticulum (ER), activates a calcium current with similar properties. The current density is 0.22 +/- 0.20 pA/pF (n = 6). Thapsigargin activated current is reduced by Mn++ and Ba++ and increased by elevated external Ca++. Calcium influx activated by thapsigargin elevates (Ca++)i by 82 +/- 35 nM. The Ca++ currents due to agonist and due to thapsigargin do not sum, indicating that these procedures activate the same process. Carbachol and thapsigargin both cause calcium release from internal stores and the calcium current bears strong similarity to calcium-release-activated calcium currents in nonexcitable cells (Hoth, M., and R. Penner. 1993. Journal of Physiology. 465:359-386; Zweifach, A., and R. S. Lewis, 1993. Proceedings of the National Academy of Sciences, USA. 90:6295-6299).


1995 ◽  
Vol 269 (4) ◽  
pp. C979-C985 ◽  
Author(s):  
S. H. Thompson ◽  
C. Mathes ◽  
A. A. Alousi

Muscarinic agonists elicit large increases in intracellular Ca2+ and guanosine 3',5'-cyclic monophosphate (cGMP) in N1E-115 neuroblastoma cells. Both signals are blocked in cells loaded with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid showing that the increase in intracellular Ca2+ concentration ([Ca2+]i) is necessary to stimulate cGMP accumulation. Inhibition of nitric oxide synthase (NOS) blocks the cGMP response without affecting the peak amplitude of the intracellular Ca2+ signal, and it is concluded that Ca(2+)-dependent activation of NOS is required for cGMP production. cGMP accumulation is reduced by 60% when cells are bathed in Ca(2+)-free saline, but the peak change in [Ca2+]i is not affected. This suggests that Ca2+ influx is strongly coupled to the activation of cGMP production, even though it makes a smaller contribution to the intracellular Ca2+ signal than does Ca2+ release. Thapsigargin, which releases Ca2+ from intracellular stores, activates Ca2+ influx and increases cGMP. The cGMP increase is transient and follows approximately the same time course as Ca2+ store depletion. Ca2+ influx remains activated after store depletion, however, which indicates that influx alone cannot sustain cGMP production. It is concluded that summation of Ca2+ influx and Ca2+ release is necessary to reach a threshold Ca2+ level needed to stimulate cGMP accumulation. Because of the large contribution from Ca2+ influx, we suggest that NOS or a cofactor necessary for its activation may be located close to Ca2+ channels in the membrane.


1997 ◽  
Vol 77 (1) ◽  
pp. 405-420 ◽  
Author(s):  
Kelvin E. Jones ◽  
Parveen Bawa

Jones, Kelvin E. and Parveen Bawa. Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J. Neurophysiol. 77: 405–420, 1997. Two compartmental models of spinal alpha motoneurons were constructed to explore the relationship between background firing rate and response to an excitatory input. The results of these simulations were compared with previous results obtained from human motoneurons and discussed in relation to the current model for repetitively firing human motoneurons. The morphologies and cable parameters of the models were based on two type-identified cat motoneurons previously reported in the literature. Each model included five voltage-dependent channels that were modeled using Hodgkin-Huxley formalism. These included fast Na+ and K+ channels in the initial segment and fast Na+ and K+ channels as well as a slow K+ channel in the soma compartment. The density and rate factors for the slow K+ channel were varied until the models could reproduce single spike AHP parameters for type-identified motoneurons in the cat. Excitatory synaptic conductances were distributed along the equivalent dendrites with the same density described for la synapses from muscle spindles to type-identified cat motoneurons. Simultaneous activation of all synapses on the dendrite resulted in a large compound excitatory postsynaptic potential (EPSP). Brief depolarizing pulses injected into a compartment of the equivalent dendrite resulted in pulse potentials (PPs), which resembled the compound EPSPs. The effects of compound EPSPs and PPs on firing probability of the two motoneuron models were examined during rhythmic firing. Peristimulus time histograms, constructed between the stimulus and the spikes of the model motoneuron, showed excitatory peaks whose integrated time course approximated the time course of the underlying EPSP or PP as has been shown in cat motoneurons. The excitatory peaks were quantified in terms of response probability, and the relationship between background firing rate and response probability was explored. As in real human motoneurons, the models exhibited an inverse relationship between response probability and background firing rate. The biophysical properties responsible for the relationship between response probability and firing rate included the shapes of the membrane voltage trajectories between spikes and nonlinear changes in PP amplitude during the interspike interval at different firing rates. The results from these simulations suggest that the relationship between response probability and background firing rate is an intrinsic feature of motoneurons. The similarity of the results from the models, which were based on the properties of cat motoneurons, and those from human motoneurons suggests that the biophysical properties governing rhythmic firing in human motoneurons are similar to those of the cat.


Life Sciences ◽  
1999 ◽  
Vol 64 (6-7) ◽  
pp. 563
Author(s):  
W.S. Messer ◽  
X.-P. Huang ◽  
P.I. Nagy ◽  
F.E. Williams ◽  
S.M. Peseckis

Sign in / Sign up

Export Citation Format

Share Document