scholarly journals Atp-Dependent Adenophostin Activation of Inositol 1,4,5-Trisphosphate Receptor Channel Gating

2001 ◽  
Vol 117 (4) ◽  
pp. 299-314 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Sean McBride ◽  
J. Kevin Foskett

The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is a ligand-gated intracellular Ca2+ release channel that plays a central role in modulating cytoplasmic free Ca2+ concentration ([Ca2+]i). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP3R that is structurally different from InsP3 and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP3R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP3R activated by either AdA or InsP3 have identical channel conductance properties. Furthermore, AdA, like InsP3, activates the channel by tuning Ca2+ inhibition of gating. However, gating of the AdA-liganded InsP3R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP3-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP3 in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP3R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP3 in the presence or absence of ATP. Also, the higher functional affinity of InsP3R for AdA than for InsP3 is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP3R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca2+ release events in cells. Comparisons of single-channel gating kinetics of the InsP3R activated by InsP3, AdA, and its analogues also identify molecular elements in InsP3R ligands that contribute to binding and activation of channel gating.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Takeshi Nomura ◽  
Akiyuki Taruno ◽  
Makoto Shiraishi ◽  
Takashi Nakahari ◽  
Toshio Inui ◽  
...  

2001 ◽  
Vol 117 (5) ◽  
pp. 435-446 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Sean McBride ◽  
J. Kevin Foskett

The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is an endoplasmic reticulum–localized Ca2+-release channel that controls complex cytoplasmic Ca2+ signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 InsP3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of ∼3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 μM under saturating (10 μM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP3 concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of ∼4. InsP3 activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3–induced Ca2+ release and low gain Ca2+–induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.


1991 ◽  
Vol 273 (2) ◽  
pp. 449-457 ◽  
Author(s):  
M Fill ◽  
R Mejia-Alvarez ◽  
F Zorzato ◽  
P Volpe ◽  
E Stefani

A large (565 kDa) junctional sarcoplasmic reticulum (SR) protein, the ryanodine receptor (RYR), may play both a structural and a functional role in the mechanism of skeletal muscle excitation-contraction coupling. Recently, the primary amino acid sequence of the RYR has been elucidated. In this paper, we introduce an immunological approach to examine the functional (electrophysiological) properties of the RYR when it is incorporated into planar lipid bilayers. The effects of two polyclonal antibodies against the SR junctional face membrane (JFM) and the RYR (anti-JFM and anti-RYR) were tested on the single-channel gating properties of the RYR SR Ca2(+)-release channel. Junctional SR vesicles were fused into planar lipid bilayers in solutions containing caesium salts. Solutions were designed to minimize the background conductances of the SR K+ and Cl- channels. Three actions of the anti-JFM antibody were distinguished on the basis of single-channel gating and conductance. The anti-RYR antibody had a single action, a simultaneous decrease in single-channel open probability (Po) and conductance. Both antibodies appear to alter single-channel gating by disrupting the Ca2(+)-activation mechanism of the channel. Anti-RYR-antibody-induced gating abnormalities were reversed by ATP, although the ATP-re-activated channels had altered gating kinetics. Two antigenic regions, recognizing the anti-RYR antibody, in the C-terminal end of the RYR primary amino acid sequence contain or are closely associated with putative ligand (Ca2+ and ATP)-binding sites identified previously. Our results demonstrate (1) that the antibodies induced abnormal gating (decreased open probability and stabilization of subconducting states) of SR release channels, and (2) that abnormal gating is not associated with physical obstruction or alteration of the conduction pathway. Thus antibodies directed at specific regions of the RYR (e.g. putative ligand-binding sites) can be used as effective probes with which to study the structural and functional properties of the SR Ca2(+)-release channel gating at the single-channel level.


Neuron ◽  
1993 ◽  
Vol 11 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Xuesi M. Shao ◽  
Diane M. Papazian

2003 ◽  
Vol 122 (5) ◽  
pp. 583-603 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Sean M.J. McBride ◽  
J. Kevin Foskett

The InsP3R Ca2+ release channel has a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing the sensitivity of the channel to inhibition by high [Ca2+]i. To determine if relieving Ca2+ inhibition is sufficient for channel activation, we examined single-channel activities in low [Ca2+]i in the absence of InsP3, by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent channel activities with low open probability Po (∼0.03) were observed in [Ca2+]i < 5 nM with the same frequency as in the presence of InsP3, whereas no activities were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i of the channel to be 1.2–4.0 nM in the absence of InsP3, and demonstrate that the channel can be active when all of its ligand-binding sites (including InsP3) are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies of [Ca2+]i and InsP3 regulation of steady-state channel gating behavior of types 1 and 3 InsP3R isoforms, including spontaneous InsP3-independent channel activities, the tetrameric channel can adopt six different conformations, the equilibria among which are controlled by two inhibitory and one activating Ca2+-binding and one InsP3-binding sites in a manner outlined in the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the Ca2+ affinities of the high-affinity inhibitory sites in different conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent low-affinity inhibitory site. The model also suggests that besides the ligand-regulated gating mechanism, the channel has a ligand-independent gating mechanism responsible for maximum channel Po being less than unity. The validity of this model was established by its successful quantitative prediction of channel behavior after it had been exposed to ultra-low bath [Ca2+].


2011 ◽  
Vol 286 (41) ◽  
pp. 35998-36010 ◽  
Author(s):  
Catherine M. Kopil ◽  
Horia Vais ◽  
King-Ho Cheung ◽  
Adam P. Siebert ◽  
Don-On Daniel Mak ◽  
...  

The type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) is a ubiquitous intracellular Ca2+ release channel that is vital to intracellular Ca2+ signaling. InsP3R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca2+ homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP3R1 and utilized a recombinant truncated form of the channel (capn-InsP3R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP3R1 revealed InsP3-independent gating and high open probability (Po) under optimal cytoplasmic Ca2+ concentration ([Ca2+]i) conditions. However, some [Ca2+]i regulation of the cleaved channel remained, with a lower Po in suboptimal and inhibitory [Ca2+]i. Expression of capn-InsP3R1 in N2a cells reduced the Ca2+ content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca2+ loading compared with control cells expressing full-length InsP3R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP3R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP3R1 generates a dysregulated channel that disrupts cellular Ca2+ homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP3R1 in a clinically relevant injury model, suggesting that Ca2+ leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1998 ◽  
Vol 112 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Bhavna Tanna ◽  
William Welch ◽  
Luc Ruest ◽  
John L. Sutko ◽  
Alan J. Williams

The binding of ryanodine to a high affinity site on the sarcoplasmic reticulum Ca2+-release channel results in a dramatic alteration in both gating and ion handling; the channel enters a high open probability, reduced-conductance state. Once bound, ryanodine does not dissociate from its site within the time frame of a single channel experiment. In this report, we describe the interactions of a synthetic ryanoid, 21-amino-9α-hydroxy-ryanodine, with the high affinity ryanodine binding site on the sheep cardiac sarcoplasmic reticulum Ca2+-release channel. The interaction of 21-amino-9α-hydroxy-ryanodine with the channel induces the occurrence of a characteristic high open probability, reduced-conductance state; however, in contrast to ryanodine, the interaction of this ryanoid with the channel is reversible under steady state conditions, with dwell times in the modified state lasting seconds. By monitoring the reversible interaction of this ryanoid with single channels under voltage clamp conditions, we have established a number of novel features of the ryanoid binding reaction. (a) Modification of channel function occurs when a single molecule of ryanoid binds to the channel protein. (b) The ryanoid has access to its binding site only from the cytosolic side of the channel and the site is available only when the channel is open. (c) The interaction of 21-amino-9α-hydroxy-ryanodine with its binding site is influenced strongly by transmembrane voltage. We suggest that this voltage dependence is derived from a voltage-driven conformational alteration of the channel protein that changes the affinity of the binding site, rather than the translocation of the ryanoid into the voltage drop across the channel.


2000 ◽  
Vol 278 (3) ◽  
pp. C601-C611 ◽  
Author(s):  
Edward M. Balog ◽  
Bradley R. Fruen ◽  
Patricia K. Kane ◽  
Charles F. Louis

Inorganic phosphate (Pi) accumulates in the fibers of actively working muscle where it acts at various sites to modulate contraction. To characterize the role of Pi as a regulator of the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, we examined the action of Pi on purified SR Ca2+ release channels, isolated SR vesicles, and skinned skeletal muscle fibers. In single channel studies, addition of Pi to the cis chamber increased single channel open probability ( P o; 0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mM Pi) by decreasing mean channel closed time; mean channel open times were unaffected. In contrast, the ATP analog, β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP), enhanced P o by increasing single channel open time and decreasing channel closed time. Pi stimulation of [3H]ryanodine binding by SR vesicles was similar at all concentrations of AMP-PCP, suggesting Pi and adenine nucleotides act via independent sites. In skinned muscle fibers, 40 mM Pi enhanced Ca2+-induced Ca2+ release, suggesting an in situ stimulation of the release channel by high concentrations of Pi. Our results support the hypothesis that Pi may be an important endogenous modulator of the skeletal muscle SR Ca2+ release channel under fatiguing conditions in vivo, acting via a mechanism distinct from adenine nucleotides.


Sign in / Sign up

Export Citation Format

Share Document