scholarly journals Accessibility of Targeted DHPR Sites to Streptavidin and Functional Effects of Binding on EC Coupling

2007 ◽  
Vol 130 (4) ◽  
pp. 379-388 ◽  
Author(s):  
Nancy M. Lorenzon ◽  
Kurt G. Beam

In skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca2+ channel and as the voltage sensor for excitation–contraction (EC coupling), triggering Ca2+ release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR α1S or β1a subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit. After saponin permeabilization, the ∼60-kD streptavidin molecule had access to the β1a N and C termini and to the α1S N terminus and proximal II–III loop (residues 671–686). Steptavidin also had access to these sites after injection into living myotubes. However, sites of the α1S C terminus were either inaccessible or conditionally accessible in saponin- permeabilized myotubes, suggesting that these C-terminal regions may exist in conformations that are occluded by other proteins in PM/SR junction (e.g., RyR1). The binding of injected streptavidin to the β1a N or C terminus, or to the α1S N terminus, had no effect on electrically evoked contractions. By contrast, binding of streptavidin to the proximal α1S II–III loop abolished such contractions, without affecting agonist-induced Ca2+ release via RyR1. Moreover, the block of EC coupling did not appear to result from global distortion of the DHPR and supports the hypothesis that conformational changes of the α1S II–III loop are necessary for EC coupling in skeletal muscle.

2014 ◽  
Vol 112 (2) ◽  
pp. 602-606 ◽  
Author(s):  
Alexander Polster ◽  
Stefano Perni ◽  
Hicham Bichraoui ◽  
Kurt G. Beam

Excitation–contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca2+ channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca2+ channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca2+ channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.


2008 ◽  
Vol 133 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Roger A. Bannister ◽  
Isaac N. Pessah ◽  
Kurt G. Beam

The term excitation-coupled Ca2+ entry (ECCE) designates the entry of extracellular Ca2+ into skeletal muscle cells, which occurs in response to prolonged depolarization or pulse trains and depends on the presence of both the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor in the sarcoplasmic reticulum (SR) membrane. The ECCE pathway is blocked by pharmacological agents that also block store-operated Ca2+ entry, is inhibited by dantrolene, is relatively insensitive to the DHP antagonist nifedipine (1 μM), and is permeable to Mn2+. Here, we have examined the effects of these agents on the L-type Ca2+ current conducted via the DHPR. We found that the nonspecific cation channel antagonists (2-APB, SKF 96356, La3+, and Gd3+) and dantrolene all inhibited the L-type Ca2+ current. In addition, complete (>97%) block of the L-type current required concentrations of nifedipine >10 μM. Like ECCE, the L-type Ca2+ channel displays permeability to Mn2+ in the absence of external Ca2+ and produces a Ca2+ current that persists during prolonged (∼10-second) depolarization. This current appears to contribute to the Ca2+ transient observed during prolonged KCl depolarization of intact myotubes because (1) the transients in normal myotubes decayed more rapidly in the absence of external Ca2+; (2) the transients in dysgenic myotubes expressing SkEIIIK (a DHPR α1S pore mutant thought to conduct only monovalent cations) had a time course like that of normal myotubes in Ca2+-free solution and were unaffected by Ca2+ removal; and (3) after block of SR Ca2+ release by 200 μM ryanodine, normal myotubes still displayed a large Ca2+ transient, whereas no transient was detectable in SkEIIIK-expressing dysgenic myotubes. Collectively, these results indicate that the skeletal muscle L-type channel is a major contributor to the Ca2+ entry attributed to ECCE.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.


1999 ◽  
Vol 73 (4) ◽  
pp. 2604-2612 ◽  
Author(s):  
Jean-Christophe Paillart ◽  
Heinrich G. Göttlinger

ABSTRACT Targeting of the human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55 gag to the plasma membrane, the site of virus assembly, is primarily mediated by the N-terminal matrix (MA) domain. N-myristylation of MA is essential for the stable association of Pr55 gag with membranes and for virus assembly. We now show that single amino acid substitutions near the N terminus of MA can dramatically impair assembly without compromising myristylation. Subcellular fractionation demonstrated that Gag membrane binding was compromised to a similar extent as in the absence of the myristyl acceptor site, indicating that the myristyl group was not available for membrane insertion. Remarkably, the effects of the N-terminal modifications could be completely suppressed by second-site mutations in the globular core of MA. The compensatory mutations enhanced Gag membrane binding and increased viral particle yields above wild-type levels, consistent with an increase in the exposure of the myristyl group. Our results support a model in which the compact globular core of MA sequesters the myristyl group to prevent aberrant binding to intracellular membranes, while the N terminus is critical to allow the controlled exposure of the myristyl group for insertion into the plasma membrane.


2010 ◽  
Vol 98 (3) ◽  
pp. 547a
Author(s):  
Osvaldo Delbono ◽  
Zhong-Min Wang ◽  
Jackson Taylor ◽  
Maria Laura Messi ◽  
Susan Treves ◽  
...  

2018 ◽  
Vol 150 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Alexander Polster ◽  
Benjamin R. Nelson ◽  
Symeon Papadopoulos ◽  
Eric N. Olson ◽  
Kurt G. Beam

In skeletal muscle, residues 720–764/5 within the CaV1.1 II–III loop form a critical domain that plays an essential role in transmitting the excitation–contraction (EC) coupling Ca2+ release signal to the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum. However, the identities of proteins that interact with the loop and its critical domain and the mechanism by which the II–III loop regulates RyR1 gating remain unknown. Recent work has shown that EC coupling in skeletal muscle of fish and mice depends on the presence of Stac3, an adaptor protein that is highly expressed only in skeletal muscle. Here, by using colocalization as an indicator of molecular interactions, we show that Stac3, as well as Stac1 and Stac2 (predominantly neuronal Stac isoforms), interact with the II–III loop of CaV1.1. Further, we find that these Stac proteins promote the functional expression of CaV1.1 in tsA201 cells and support EC coupling in Stac3-null myotubes and that Stac3 is the most effective. Coexpression in tsA201 cells reveals that Stac3 interacts only with II–III loop constructs containing the majority of the CaV1.1 critical domain residues. By coexpressing Stac3 in dysgenic (CaV1.1-null) myotubes together with CaV1 constructs whose chimeric II–III loops had previously been tested for functionality, we reveal that the ability of Stac3 to interact with them parallels the ability of these constructs to mediate skeletal type EC coupling. Based on coexpression in tsA201 cells, the interaction of Stac3 with the II–III loop critical domain does not require the presence of the PKC C1 domain in Stac3, but it does require the first of the two SH3 domains. Collectively, our results indicate that activation of RyR1 Ca2+ release by CaV1.1 depends on Stac3 being bound to critical domain residues in the II–III loop.


2001 ◽  
Vol 154 (5) ◽  
pp. 1059-1068 ◽  
Author(s):  
Koichi Ito ◽  
Shinji Komazaki ◽  
Kazushige Sasamoto ◽  
Morikatsu Yoshida ◽  
Miyuki Nishi ◽  
...  

In skeletal muscle excitation–contraction (E–C) coupling, the depolarization signal is converted from the intracellular Ca2+ store into Ca2+ release by functional coupling between the cell surface voltage sensor and the Ca2+ release channel on the sarcoplasmic reticulum (SR). The signal conversion occurs in the junctional membrane complex known as the triad junction, where the invaginated plasma membrane called the transverse-tubule (T-tubule) is pinched from both sides by SR membranes. Previous studies have suggested that junctophilins (JPs) contribute to the formation of the junctional membrane complexes by spanning the intracellular store membrane and interacting with the plasma membrane (PM) in excitable cells. Of the three JP subtypes, both type 1 (JP-1) and type 2 (JP-2) are abundantly expressed in skeletal muscle. To examine the physiological role of JP-1 in skeletal muscle, we generated mutant mice lacking JP-1. The JP-1 knockout mice showed no milk suckling and died shortly after birth. Ultrastructural analysis demonstrated that triad junctions were reduced in number, and that the SR was often structurally abnormal in the skeletal muscles of the mutant mice. The mutant muscle developed less contractile force (evoked by low-frequency electrical stimuli) and showed abnormal sensitivities to extracellular Ca2+. Our results indicate that JP-1 contributes to the construction of triad junctions and that it is essential for the efficiency of signal conversion during E–C coupling in skeletal muscle.


2002 ◽  
Vol 367 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Martin HOHENEGGER ◽  
Josef SUKO ◽  
Regina GSCHEIDLINGER ◽  
Helmut DROBNY ◽  
Andreas ZIDAR

Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca2+-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca2+-release from intracellular Ca2+ stores can be triggered by diffusible second messengers like InsP3, cyclic ADP-ribose or nicotinic acid—adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca2+-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca2+-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca2+-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC5030nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel.


Sign in / Sign up

Export Citation Format

Share Document