scholarly journals The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum

1972 ◽  
Vol 60 (6) ◽  
pp. 735-749 ◽  
Author(s):  
Antonio Scarpa ◽  
Judith Baldassare ◽  
Giuseppe Inesi

X-537 A and A 23187, two antibiotics which form liphophilic complexes with divalent cations, function as ionophores in vesicular fragments of sarcoplasmic reticulum (SR). Addition of either ionophore to SR preloaded with calcium in the presence of adenosine triphosphate (ATP), causes rapid release of calcium. Furthermore, net calcium accumulation by SR is prevented, when the ionophores are added to the reaction mixture before ATP. On the contrary, ATP-independent calcium binding to SR is not inhibited. This effect is specific for the two antibiotics and could not be reproduced, either by inactive derivatives, or by other known ionophores. Neither ionophore produces alterations of the electron microscopic appearance of SR membranes or inhibition of the calcium-dependent ATPase. In fact, the burst of ATP hydrolysis obtained on addition of calcium, is prolonged in the presence of the ionophores. Lanthanum inhibits ATP-independent calcium binding to SR, ATP-dependent calcium accumulation and calcium-dependent ATPase. However, addition of lanthanum to SR preloaded in the presence of ATP, does not cause calcium release. The reported experiments indicated that: (a) ATP-dependent calcium accumulation by SR results in primary formation of calcium ion gradients across the membrane. (b) Most of the accumulated calcium is not available for displacement by lanthanum on the outer surface of the membrane. (c) Calcium ionophores induce rapid equilibration of the gradients, by facilitating cation diffusion across the membrane.

1984 ◽  
Vol 39 (11-12) ◽  
pp. 1189-1191 ◽  
Author(s):  
Wilhelm Hasselbach

Keywords Under adequate experimental conditions calmodulin antagonists like compound 48/80 do not dissociate calcium uptake from the calcium -dependent ATP hydrolysis of skeletal muscle sarcoplasmic reticulum membranes but simultaneously inhibit both processes. Apart from the agent’s pump inhibiting effect, they interact with the caffeine sensitive calcium channel in the sarcoplasmic reticulum causing a rapid transient calcium release.


1991 ◽  
Vol 97 (3) ◽  
pp. 437-471 ◽  
Author(s):  
B J Simon ◽  
M G Klein ◽  
M F Schneider

The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of inactivation. Thus, equilibrium inactivation of calcium release appears to be produced by rather modest increases in [Ca2+] above the resting level and in a steeply calcium-dependent manner. However, the inactivation develops relatively slowly even during marked elevation of [Ca2+], indicating that a calcium-independent transition appears to occur after the initial calcium-binding step.


1985 ◽  
Vol 249 (6) ◽  
pp. H1211-H1215
Author(s):  
J. J. Murray ◽  
A. V. Kuzmin ◽  
P. W. Reed ◽  
D. O. Levitsky

The divalent cation ionophore A23187 at a concentration of 1 nM produced an increased rate of oxalate-supported calcium uptake by isolated cardiac sarcoplasmic reticulum as determined by absorbance changes of the calcium-sensitive dye murexide. Addition of a higher concentration of A23187 (0.1 microM) produced a decreased rate of calcium uptake. Measurement of the time during which ATPase was activated by calcium addition also suggested an increased rate of calcium uptake in the presence of 1 nM A23187 and an inhibition of calcium uptake at a higher concentration of the ionophore (0.1 microM). Ca2+-stimulated ATPase activity and incorporation of 32Pi from [gamma-32P]ATP into sarcoplasmic reticular proteins were increased by A23187 at concentrations of 1 nM or greater. An increased coupling of calcium uptake to ATP hydrolysis was observed at 1 nM A23187, while concentrations of the ionophore greater than or equal to 10 nM produced a decreased coupling. Addition of an inhibitor of cyclic AMP-dependent protein kinase decreased the rate of calcium uptake, and this inhibition was reversed in a concentration-dependent manner by 0.01–1 nM A23187. These data suggest that A23187 can activate a mechanism involving the calcium-dependent phosphorylation of protein that may regulate the activity of the calcium uptake system of the sarcoplasmic reticulum. These observations appear to provide an explanation for some of the contractile effects of A23187 in intact cardiac muscle that suggest that treatment with the ionophore results in an increased sequestration of calcium from the cytoplasm.


1979 ◽  
Vol 568 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Adalberto Vieyra ◽  
Helena Maria Scofano ◽  
Horácio Guimarães-Motta ◽  
Ronald K. Tume ◽  
Leopoldo De Meis

1986 ◽  
Vol 87 (6) ◽  
pp. 885-905 ◽  
Author(s):  
A Lundblad ◽  
H Gonzalez-Serratos ◽  
G Inesi ◽  
J Swanson ◽  
P Paolini

Functionally skinned and electrochemically shunted myocytes were prepared by perfusing rat hearts with collagenase in order to obtain a technically improved measurement of sarcomere dynamics and to evaluate the role of sarcoplasmic reticulum in situ with respect to contractile activation. In the presence of micromolar calcium, the myocytes exhibited phasic and propagated contraction waves beginning at one end and proceeding along the myocyte. Beating rates, the propagation velocity of the activation wave, and single sarcomere shortening and relaxation velocities were obtained by manual or automated analysis of 16-mm film recorded at 170 frames/s from a camera attached to a microscope that was equipped with a temperature-controlled stage. In parallel experiments, calcium accumulation by the sarcoplasmic reticulum of the myocytes in situ was measured by direct isotopic tracer methods. The frequency (10-38 min-1) of spontaneous contractions, the velocity (1.9-7.4 microns . s-1) of sarcomere shortening, and the velocity (1.7-6.8 microns . s-1) of sarcomere relaxation displayed identical temperature dependences (Q10 = 2.2), which are similar to that of the calcium pump of sarcoplasmic reticulum and are consistent with a rate limit imposed by enzyme-catalyzed mechanisms on all these parameters. On the other hand, the velocity (77-159 microns . s-1) of sequential sarcomere activation displayed a lower temperature dependence (Q10 = 1.5), which is consistent with a diffusion-limited and self-propagating release of calcium from one sarcomere to the other. The phasic contractile activity of the dissociated myocytes was inhibited by 10(-8)-10(6) M ryanodine (and not by myolemmal calcium blockers) under conditions in which calcium accumulation by sarcoplasmic reticulum in situ was demonstrated to proceed optimally. The effect of ryanodine is attributed to an interaction of this drug with sarcotubular structures, producing inhibition of calcium release from the sarcoplasmic reticulum. The consequent lack of sarcomere activation underlines the role of sarcoplasmic reticulum uptake and release in the phasic contractile activation of the electrochemically shunted myocytes.


1992 ◽  
Vol 262 (1) ◽  
pp. H268-H277 ◽  
Author(s):  
A. M. Vites ◽  
A. J. Pappano

We previously reported that inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and caffeine evoked contractures in saponin-permeabilized chick atria. The magnitude of contractures evoked by maximally effective concentrations of Ins(1,4,5)P3 were half those evoked by maximally effective concentrations of caffeine. In the present report, we tested the hypothesis that these two agents may act on distinct calcium-release mechanisms by comparing the effects of ryanodine, ruthenium red, and procaine on the responses to Ins(1,4,5)P3 and caffeine. We find that procaine inhibits both responses with similar mean inhibitory concentrations in the millimolar range. Nanomolar concentrations of ryanodine selectively potentiate the contractures induced by Ins(1,4,5)P3 but have no effect on those induced by caffeine. Micromolar concentrations of ryanodine inhibit responses to both Ins(1,4,5)P3 and caffeine in a use-dependent way. Ruthenium red prevents the response to Ins(1,4,5)P3 and potentiates that to caffeine, as if ruthenium red had enhanced calcium accumulation in the caffeine-sensitive pool(s). Because we found that caffeine prevented the subsequent response to Ins(1,4,5)P3, but Ins(1,4,5)P3 had no detectable effect on the caffeine-induced contracture, we conclude that Ins(1,4,5)P3 and caffeine act on pharmacologically distinct calcium-release mechanisms that may reside in the same sarcoplasmic reticulum compartment.


1972 ◽  
Vol 59 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Yoshiaki Nakamaru ◽  
Arnold Schwartz

Calcium release and binding produced by alterations in pH were investigated in isolated sarcoplasmic reticulum (SR) from skeletal muscle. When the pH was abruptly increased from 6.46 to 7.82, after calcium loading for 30 sec, 80–90 nanomoles (nmole) of calcium/mg protein were released. When the pH was abruptly decreased from 7.56 to 6.46, after calcium loading for 30 sec, 25–30 nmole of calcium/mg protein were rebound. The calcium release process was shown to be a function of pH change: 57 nmole of calcium were released per 1 pH unit change per mg protein. The amount of adenosine triphosphate (ATP) bound to the SR was not altered by the pH changes. The release phenomenon was not due to alteration of ATP concentration by the increased pH. Native actomyosin was combined with SR in order to study the effectiveness of calcium release from the SR by pH change in inducing super-precipitation of actomyosin. It was found that SR, in an amount high enough to inhibit superprecipitation at pH 6.5, did not prevent the process when the pH was suddenly increased to 7.3, indicating that the affinity of SR for calcium depends specifically on pH. These data suggest the possible participation of hydrogen ion concentration in excitation-contraction coupling.


2006 ◽  
Vol 291 (2) ◽  
pp. C245-C253 ◽  
Author(s):  
Alessandra Nori ◽  
Giorgia Valle ◽  
Elena Bortoloso ◽  
Federica Turcato ◽  
Pompeo Volpe

Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HAΔ24NH2, CS-HAΔ2D, CS-HAΔ3D, and CS-HAΔHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAΔHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAΔHT but also CS-HAΔ3D and CS-HAΔ2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HAΔ3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation.


1987 ◽  
Vol 243 (1) ◽  
pp. 165-173 ◽  
Author(s):  
V Shoshan-Barmatz

Treatment of sarcoplasmic reticulum membranes with 12 mM-methylbenzimidate (MBI) for 5 min, in the presence of 5 mM-ATP at pH 8.5, resulted in a 2-3-fold stimulation of ATP hydrolysis and over 90% inhibition of Ca2+ accumulation. This phenomenon was strictly dependent upon the presence of nucleotides with the following order of effectiveness: adenosine 5′-[beta, gamma-imido]triphosphate greater than or equal to ATP greater than UTP greater than ADP greater than AMP. Divalent cations such as Ca2+, Mg2+ and Mn2+, when present during the MBI treatment, prevented both the stimulation of ATPase activity and the inhibition of Ca2+ accumulation. Modification with MBI had no effect on E-P formation from ATP, ADP-ATP exchange, Ca2+ binding or ATP-Pi exchange catalysed by the membranes. Membranes modified with MBI in the presence of ATP and then passively loaded with Ca2+ released about 80% of their Ca2+ content within 3 s. Control membranes released only 3% of their Ca2+ during the same time period. MBI modification inhibited Ca2+ accumulation by proteoliposomes reconstituted with the partially purified ATPase but not with the purified ATPase fraction. These results suggest that MBI in the presence of ATP stimulates Ca2+ release by modifying a protein factor(s) other than the (Ca2+ + Mg2+)-ATPase.


Sign in / Sign up

Export Citation Format

Share Document