scholarly journals Ionic Strength and the Contraction Kinetics of Skinned Muscle Fibers

1974 ◽  
Vol 63 (4) ◽  
pp. 509-530 ◽  
Author(s):  
Marc D. Thames ◽  
Louis E. Teichholz ◽  
Richard J. Podolsky

The influence of KCl concentration on the contraction kinetics of skinned frog muscle fibers at 5–7°C was studied at various calcium levels. The magnitude of the calcium-activated force decreased continuously as the KCl concentration of the bathing solution was increased from 0 to 280 mM. The shortening velocity at a given relative load was unaffected by the level of calcium activation at 140 mM KCl, as has been previously reported by Podolsky and Teichholz (1970. J. Physiol. [Lond.]. 211: 19), and was independent of ionic strength when the KCl concentration was increased from 140 to 280 mM. In contrast, the shortening velocity decreased as the KCl concentration was reduced below 140 mM; the decrease in velocity was enhanced when the fibers were only partially activated. In the low KCl range, the resting tension of the fibers increased after the first contraction cycle. The results suggest that in fibers activated at low ionic strength some of the cross bridges that are formed are abnormal in the sense that they retard shortening and persist in relaxing solution.

1972 ◽  
Vol 59 (3) ◽  
pp. 347-359 ◽  
Author(s):  
P. C. Vaughan ◽  
J. N. Howell ◽  
R. S. Eisenberg

The capacitance of skeletal muscle fibers was measured by recording with one microelectrode the voltage produced by a rectangular pulse of current applied with another microelectrode. The ionic strength of the bathing solution was varied by isosmotic replacement of NaCl with sucrose, the [K] [Cl] product being held constant. The capacitance decreased with decreasing ionic strength, reaching a value of some 2 µF/cm2 in solutions of 30 mM ionic strength, and not decreasing further in solutions of 15 mM ionic strength. The capacitance of glycerol-treated fibers did not change with ionic strength and was also some 2 µF/cm2. It seems likely that lowering the ionic strength reduces the capacitance of the tubular system (defined as the charge stored in the tubular system), and that the 2 µF/cm2 which is insensitive to ionic strength is associated with the surface membrane. The tubular system is open to the external solution in low ionic strength solutions since peroxidase is able to diffuse into the lumen of the tubules. Twitches and action potentials were also recorded from fibers in low ionic strength solutions, even though the capacitance of the tubular system was very small in these solutions. This finding can be explained if there is an action potential—like mechanism in the tubular membrane.


2002 ◽  
Vol 282 (4) ◽  
pp. C647-C653 ◽  
Author(s):  
Jeffrey J. Widrick

Chemically skinned muscle fibers, prepared from the rat medial gastrocnemius and soleus, were subjected to four sequential slack tests in Ca2+-activating solutions containing 0, 15, 30, and 0 mM added Pi. Pi (15 and 30 mM) had no effect on the unloaded shortening velocity ( V o) of fibers expressing type IIb myosin heavy chain (MHC). For fibers expressing type I MHC, 15 mM Pi did not alter V o, whereas 30 mM Pireduced V o to 81 ± 1% of the original 0 mM Pi value. This effect was readily reversible when Pi was lowered back to 0 mM. These results are not compatible with current cross-bridge models, developed exclusively from data obtained from fast fibers, in which V o is independent of Pi. The response of the type I fibers at 30 mM Pi is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects of Pi on cross bridges, the thin filament, or the rate-limiting step of the cross-bridge cycle.


1981 ◽  
Vol 78 (3) ◽  
pp. 233-257 ◽  
Author(s):  
J Gulati ◽  
R J Podolsky

The force development by calcium-activated skinned frog skeletal muscle fibers and the motion on a slow time base after a quick decrease in load were studied at 0-1 degrees C as a function of the ionic strength and the degree of activation. The ionic strength was varied between 50 and 190 mM by adding appropriate concentrations of KCl to the bathing solution. Under these conditions, the fibers could be maximally activated for several cycles at low ionic strength without developing residual tension. We found that the steady isometric force in fully activated fibers linearly decreased when the KCl concentration was increased from 0 to 140 mM. The steady isotonic motion at a given relative load in fully activated fibers was almost the same at KCl concentration greater than or equal to 50 mM. In 0 and 20 mM KCl, the isotonic velocity decreased continuously for more than 300 ms. At a given relative load, the initial velocity of the motion in 0 and 20 mM KCl was about 0.6 and 0.9 times, respectively, that in 140 mM KCl. The initial velocity decreased further when residual tension developed; this observation provides additional evidence that residual tension may reflect the presence of an internal load. The effect of calcium on the motion was examined at 70 mM KCl. In this solution, the motion during the velocity transient at a given relative load appeared to be the same at different levels of activation. The speed of the subsequent motion was almost steady at high calcium levels but decreased continuously in low calcium levels. These results support the idea that at low ionic strength the response of the fiber to calcium is switch-like, but that other factors also affect the contraction mechanism under these conditions.


1978 ◽  
Vol 72 (5) ◽  
pp. 701-715 ◽  
Author(s):  
J Gulati ◽  
R J Podolsky

Calcium and ionic strength are both known to modify the force developed by skinned frog muscle fibers. To determine how these parameters affect the cross-bridge contraction mechanism, the isotonic velocity transients following step changes in load were studied in solutions in which calcium concentration and ionic strength were varied. Analysis of the motion showed that calcium has no effect on either the null time or the amplitude of the transients. In contrast, the transient amplitude was increased in high ionic strength and was suppressed in low ionic strength. These results are consistent with the idea that calcium affects force in skeletal muscle by modulating the number of force generators in a simple switchlike "on-off" manner and that the steady force at a given calcium level is proportional to cross-bridge number. On the other hand, the effect of ionic strength on force is associated with changes in the kinetic properties of the cross-bridge mechanism.


1998 ◽  
Vol 275 (2) ◽  
pp. C375-C381 ◽  
Author(s):  
Y.-B. Sun ◽  
C. Caputo ◽  
K. A. P. Edman

The effects of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid (BAPTA) on force and intracellular Ca2+ transient were studied during isometric twitches and tetanuses in single frog muscle fibers. BAPTA was added to the bathing solution in its permeant AM form (50 and 100 μM). There was no clear correlation between the changes in force and the changes in Ca2+ transient. Thus during twitch stimulation BAPTA did not suppress the Ca2+ transient until the force had been reduced to <50% of its control value. At the same time, the peak myoplasmic free Ca2+concentration reached during tetanic stimulation was markedly increased, whereas the force was slightly reduced by BAPTA. The effects of BAPTA were not duplicated by using another Ca2+ chelator, EGTA, indicating that BAPTA may act differently as a Ca2+ chelator. Stiffness measurements suggest that the decrease in mechanical performance in the presence of BAPTA is attributable to a reduced number of active cross bridges. The results could mean that BAPTA, under the conditions used, inhibits the binding of Ca2+ to troponin C resulting in a reduced state of activation of the contractile system.


1987 ◽  
Vol 243 (2) ◽  
pp. 379-384 ◽  
Author(s):  
A J Mathews ◽  
T Brittain

The reaction kinetics of native and carbodi-imide-modified tuna and horse heart cytochromes c with both a strong (dithionite) and a relatively weak (ascorbate) reducing agent were studied over a wide range of conditions. In their reactions with dithionite both the native and modified cytochromes exhibit single exponential time courses. The effects of dithionite concentration and ionic strength on the rate of the reduction are complex and can best be explained in terms of the model proposed by Lambeth & Palmer [(1973) J. Biol. Chem. 248, 6095-6103]. According to this model, at low ionic strength the native proteins are reduced almost exclusively by S2O4(2-) whereas the modified proteins showed reactivity towards both S2O4(2-) and SO2.-. These findings are interpreted in terms of the different charge characteristics of the carbodi-imide-modified proteins relative to the native proteins. The findings that the modified proteins react with ascorbate in a biphasic manner are explained as arising from ascorbate binding to a reducible form of the protein, before electron transfer, with an equilibrium between the ascorbate-reducible form of the protein and a non-reducible form. Estimates were obtained for both the ascorbate equilibrium binding constant and the rate constant for the internal electron transfer for both the native and modified horse and tuna proteins. The effect of pH on the reactions indicates that the active reductant in all cases is ascorbate2-. The studies of ascorbate reactivity yield important information concerning the proposed correlation between ascorbate reducibility and the presence of a 695 nm-absorption band, and the study of dithionite reactivity illustrates the effect of protein charge and solution ionic strength on the relative contributions made by the species SO2.- and S2O4(2-) to the reduction of ferricytochrome c.


1997 ◽  
Vol 273 (1) ◽  
pp. C266-C276 ◽  
Author(s):  
M. L. Bartoo ◽  
W. A. Linke ◽  
G. H. Pollack

By examining the mechanical properties of isolated skeletal and cardiac myofibrils in calcium-free, ATP-containing solution, we attempted to separate the stiffness contribution of titin filaments from that of weakly bound cross bridges. Efforts to enhance weak cross-bridge binding by lowering ionic strength were met by clear contractile responses. Even at low temperature, myofibrils bathed in low-ionic-strength relaxing solution generated increased force and exhibited sarcomere shortening, apparently caused by active contraction. At normal ionic strength, myofibril stiffness, estimated from the force response to rapid sinusoidal oscillations, increased steadily with sarcomere extension up to a strain limit. No obvious stiffness contribution from weak cross bridges was detectable. Instead, the stiffness response, which was frequency dependent at all sarcomere lengths, was apparently generated by the viscoelastic titin filaments. During imposed stretch-hold ramps, both peak force/stiffness and the amount of subsequent stress relaxation increased with higher stretch rates, larger stretch amplitudes, and longer sarcomere lengths. We conclude that, for a truly relaxed myofibril, both passive force and dynamic stiffness principally reflect the intrinsic viscoelastic properties of the titin filaments.


1987 ◽  
Vol 247 (3) ◽  
pp. 505-511 ◽  
Author(s):  
J S Barton ◽  
D L Vandivort ◽  
D H Heacock ◽  
J A Coffman ◽  
K A Trygg

The assembly kinetics of microtubule protein are altered by ionic strength, temperature and Mg2+, but not by pH. High ionic strength (I0.2), low temperature (T less than 30 degrees C) and elevated Mg2+ (greater than or equal to 1.2 mM) induce a transition from biphasic to monophasic kinetics. Comparison of the activation energy obtained for the fast biphasic step at low ionic strength (I0.069) shows excellent agreement with the values obtained at high ionic strength, low temperature and elevated Mg2+. From this observation it can be implied that the tubulin-containing reactant of the fast biphasic event is also the species that elongates microtubules during monophasic assembly. Second-order rate constants for biphasic assembly are 3.82(+/- 0.72) x 10(7) M-1.s-1 and 5.19(+/- 1.25) x 10(6) M-1.s-1, and for monophasic assembly the rate constant is 2.12(+/- 0.56) x 10(7) M-1.s-1. The microtubule number concentration is constant during elongation of microtubules for biphasic and monophasic assembly.


Sign in / Sign up

Export Citation Format

Share Document