Effect of Pi on unloaded shortening velocity of slow and fast mammalian muscle fibers

2002 ◽  
Vol 282 (4) ◽  
pp. C647-C653 ◽  
Author(s):  
Jeffrey J. Widrick

Chemically skinned muscle fibers, prepared from the rat medial gastrocnemius and soleus, were subjected to four sequential slack tests in Ca2+-activating solutions containing 0, 15, 30, and 0 mM added Pi. Pi (15 and 30 mM) had no effect on the unloaded shortening velocity ( V o) of fibers expressing type IIb myosin heavy chain (MHC). For fibers expressing type I MHC, 15 mM Pi did not alter V o, whereas 30 mM Pireduced V o to 81 ± 1% of the original 0 mM Pi value. This effect was readily reversible when Pi was lowered back to 0 mM. These results are not compatible with current cross-bridge models, developed exclusively from data obtained from fast fibers, in which V o is independent of Pi. The response of the type I fibers at 30 mM Pi is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects of Pi on cross bridges, the thin filament, or the rate-limiting step of the cross-bridge cycle.

1995 ◽  
Vol 269 (6) ◽  
pp. C1532-C1539 ◽  
Author(s):  
M. Regnier ◽  
C. Morris ◽  
E. Homsher

The regulation of cross-bridge transition from weakly attached to force-bearing states was studied at 10 degrees C in skinned muscle fibers by measuring the rate of force development after a quick release-restretch cycle (ktr), the rate of force decline (kPi) after photogeneration of Pi from caged Pi, and stiffness in the presence and absence of an inhibitor of strong cross-bridge formation, 2,3-butanedione monoxime (BDM). Both BDM and Pi suppressed force more than stiffness. However, reduction of Ca2+ suppressed force and stiffness in a parallel fashion. Both ktr and kPi were reversibly reduced (by 30-35%) in 3 mM BDM, but both were increased by increasing Pi concentration. Reduction of Ca2+ concentration to match the force seen in 3 mM BDM had no effect on kPi but decreased ktr by 85%. These results are inconsistent with cross-bridge models undergoing the transition from a weakly bound to a force-generating state in a single step but are consistent with a model having two steps, one of which is controlled by pCa.


1998 ◽  
Vol 84 (5) ◽  
pp. 1776-1787 ◽  
Author(s):  
Robert H. Fitts ◽  
Sue C. Bodine ◽  
Janell G. Romatowski ◽  
Jeffrey J. Widrick

In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity ( V o) of any fiber type. V o of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on V o.


1974 ◽  
Vol 63 (4) ◽  
pp. 509-530 ◽  
Author(s):  
Marc D. Thames ◽  
Louis E. Teichholz ◽  
Richard J. Podolsky

The influence of KCl concentration on the contraction kinetics of skinned frog muscle fibers at 5–7°C was studied at various calcium levels. The magnitude of the calcium-activated force decreased continuously as the KCl concentration of the bathing solution was increased from 0 to 280 mM. The shortening velocity at a given relative load was unaffected by the level of calcium activation at 140 mM KCl, as has been previously reported by Podolsky and Teichholz (1970. J. Physiol. [Lond.]. 211: 19), and was independent of ionic strength when the KCl concentration was increased from 140 to 280 mM. In contrast, the shortening velocity decreased as the KCl concentration was reduced below 140 mM; the decrease in velocity was enhanced when the fibers were only partially activated. In the low KCl range, the resting tension of the fibers increased after the first contraction cycle. The results suggest that in fibers activated at low ionic strength some of the cross bridges that are formed are abnormal in the sense that they retard shortening and persist in relaxing solution.


2003 ◽  
Vol 284 (6) ◽  
pp. C1448-C1459 ◽  
Author(s):  
Craig Goodman ◽  
Michael Patterson ◽  
Gabriela Stephenson

In this study, we investigated whether the previously established differences between fast- and slow-twitch single skeletal muscle fibers of the rat, in terms of myosin heavy chain (MHC) isoform composition and contractile function, are also detectable in excitation-contraction (E-C) coupling. We compared the contractile responsiveness of electrophoretically typed, mechanically skinned single fibers from the soleus (Sol), the extensor digitorum longus (EDL), and the white region of the sternomastoid (SM) muscle to t-system depolarization-induced activation. The quantitative parameters assessed were the amplitude of the maximum depolarization-induced force response (DIFRmax; normalized to the maximum Ca2+-activated force in that fiber) and the number of responses elicited until the force declined by 75% of DIFRmax (R-D75%). The mean DIFRmaxvalues for type IIB EDL and type IIB SM fibers were not statistically different, and both were greater than the mean DIFRmax for type I Sol fibers. The mean R-D75% for type IIB EDL fibers was greater than that for type I Sol fibers as well as type IIB SM fibers. These data suggest that E-C coupling characteristics of mechanically skinned rat single muscle fibers are related to MHC-based fiber type and the muscle of origin.


1995 ◽  
Vol 78 (6) ◽  
pp. 2147-2152 ◽  
Author(s):  
C. E. Blanco ◽  
P. E. Micevych ◽  
W. Z. Zhan ◽  
G. C. Sieck

Muscles of the male rat perineum attaching to the penis are the ischiocavernosus, the medial bulbocavernosus (BC), and the dorsal BC, also known as the levator ani (LA). The BC and the LA muscles are innervated by a morphologically, neurochemically, and physiologically homogeneous pool of motoneurons, the spinal nucleus of BC (SNB). The purpose of the present study was to determine whether BC and LA muscle fibers constitute histochemically and biochemically homogeneous populations, reflecting the homogeneity of the innervating motoneuron pool. Histochemical fiber type was based on the pH lability of myofibrillar adenosinetriphosphatase. Activity of the mitochondrial enzyme succinate dehydrogenase (SDH) was determined by using a quantitative histochemical procedure. A nonsexually dimorphic, androgen-insensitive muscle, the medial gastrocnemius (MG), was used as control. The superficial regions of the MG, BC, and LA muscles were composed exclusively of type IIb muscle fibers, whereas the fiber type composition of the deep region of the MG was mixed: 28.3% type I, 20.6% type IIa, 40.1% type IIx, and 11.0% type IIb. The SDH activities of type IIb fibers in the deep region of the MG ranged from 1.20 to 9.00 (mean 3.72 +/- 0.40) mmol fumarate.liter tissue-1.min-1. Fiber SDH activities in the superficial region of the MG ranged from 0.04 to 2.70 (mean 1.20 +/- 0.21) mmol fumarate.liter tissue-1.min-1. In the BC muscle, the SDH activities of the type IIb fibers ranged from undetectable to 1.80 with a mean of 0.62 +/- 0.05 mmol fumarate.liter tissue-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 270 (2) ◽  
pp. E203-E208
Author(s):  
A. L. Ruzycky ◽  
B. T. Ameredes

The relationship between cross-bridge cycling rate and isometric stress was investigated in rat myometrium. Stress production by myometrial strips was measured under resting, K+ depolarization, and oxytocin-stimulated conditions. Cross-bridge cycling rates were determined from measurements of maximal unloaded shortening velocity, using the quick-release method. Force redevelopment after the quick release was used as an index of cross-bridge attachment. With maximal K+ stimulation, stress increased with increased cross-bridge cycling (+76%; P < 0.05) and attached cross bridges (+112%; P < 0.05). Addition of oxytocin during K+ stimulation further increased stress (+30%; P < 0.05). With this force component, the cross-bridge cycling rate decreased (-60%; P < 0.05) similar to that under resting conditions. Attached cross-bridges did not increase with this additional stress. The results suggest two distinct mechanisms mediating myometrial contractions. One requires elevated intracellular calcium and rapidly cycling cross bridges. The other mechanism may be independent of calcium and appears to be mediated by slowly cycling cross bridges, supporting greater unit stress.


1988 ◽  
Vol 255 (4) ◽  
pp. C536-C542 ◽  
Author(s):  
J. S. Walker ◽  
I. R. Wendt ◽  
C. L. Gibbs

Heat production, unloaded shortening velocity (Vus), and load-bearing capacity (LBC) were studied in the isolated rat anococcygeus muscle during isometric contractions at 27 degrees C. The relation between the total suprabasal heat produced and the stress-time integral for isometric contractions of various durations was curvilinear, demonstrating a decreasing slope as contractile duration increased. The rate of heat production at 600 s was approximately 68% of the peak value of 6.55 mW/g that occurred at 10 s. At the same time, force rose from a mean of 92 mN/mm2 at 10 s to a value of 140 mN/mm2 at 600 s. This produced a nearly threefold increase in the economy of force maintenance. The decline in the rate of heat production was accompanied by a decline in Vus from 0.56 Lo/s at 10 s to 0.28 Lo/s at 600 s, where Lo is the length for optimal force development. This suggests the fall in the rate of heat production was caused, at least in part, by a slowing of cross-bridge kinetics. The ratio of LBC to developed tension at 10 s was not significantly different from the ratio at 600 s, suggesting that the increase in tension was due to an increased number of attached cross bridges. The decline in heat production, therefore, appears contradictory, since an increased number of attached cross bridges would predict an increased rate of energy expenditure. The observations can be reconciled if either 1) the increase in force is caused by a progressive increase in the attachment time of a constant number of cross bridges that cycle at a lower frequency or 2) the decline in energy expenditure caused by the slowing of cross-bridge cycling is sufficient to mask the increase caused by the recruitment of additional cross bridges.


1994 ◽  
Vol 266 (6) ◽  
pp. C1699-C1713 ◽  
Author(s):  
J. M. Schluter ◽  
R. H. Fitts

Mechanical properties were measured in single skinned fibers from rat hindlimb muscle to test the hypothesis that the fast type IIb fiber exhibits a higher maximal shortening velocity (Vo) than the fast type IIa fiber and that the difference is directly attributable to a higher myofibrillar adenosinetriphosphatase (ATPase) activity in the type IIb fiber. Additional measurements were made to test the hypotheses that regular endurance exercise increases and decreases the Vo of the type I and IIa fiber, respectively, and that the altered Vo is associated with a corresponding change in the fiber ATPase activity. Rats were exercised by 8-12 wk of treadmill running for 2 h/day, 5 day/wk, up a 15% grade at a speed of 27 m/min. Fiber Vo was determined by the slack test, and the ATPase was measured fluorometrically in the same fiber. The myosin isozyme profile of each fiber was subsequently determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mean +/- SE Vo (7.9 +/- 0.22 fiber lengths/s) of the type IIb fiber was significantly greater than the type IIa fiber (4.4 +/- 0.21 fiber lengths/s), and the higher Vo was associated with a higher ATPase activity (927 +/- 70 vs. 760 +/- 60 microM.min-1.mm-3). The exercise program induced cardiac hypertrophy and an approximately twofold increase in the mitochondrial marker enzyme citrate synthase. Exercise had no effect on fiber diameter or peak tension per cross-sectional area in any fiber type, but, importantly, it significantly increased (23%) both the Vo and the ATPase activity of the slow type I fiber of the soleus.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (1) ◽  
pp. C86-C94 ◽  
Author(s):  
C. M. Hai ◽  
R. A. Murphy

We have proposed a model that incorporates a dephosphorylated "latch bridge" to explain the mechanics and energetics of smooth muscle. Cross-bridge phosphorylation is proposed as a prerequisite for cross-bridge attachment and rapid cycling. Features of the model are 1) myosin light chain kinase and phosphatase can act on both free and attached cross bridges, 2) dephosphorylation of an attached phosphorylated cross bridge produces a noncycling "latch bridge," and 3) latch bridges have a slow detachment rate. This model quantitatively predicts the latch state: stress maintenance with reduced phosphorylation, cross-bridge cycling rates, and ATP consumption. In this study, we adapted A. F. Huxley's formulation of crossbridge cycling (A. F. Huxley, Progr. Biophys. Mol. Biol. 7: 255-318, 1957) to the latch-bridge model to predict the relationship between isotonic shortening velocity and phosphorylation. The model successfully predicted the linear dependence of maximum shortening velocity at zero external load (V0) on phosphorylation, as well as the family of stress-velocity curves determined at different times during a contraction when phosphorylation values varied. The model implies that it is unnecessary to invoke an internal load or multiple regulatory mechanisms to explain regulation of V0 in smooth muscle.


2019 ◽  
Vol 317 (6) ◽  
pp. E984-E998
Author(s):  
Mark W. Pataky ◽  
Sydney L. Van Acker ◽  
Rhea Dhingra ◽  
Marina M. Freeburg ◽  
Edward B. Arias ◽  
...  

Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.


Sign in / Sign up

Export Citation Format

Share Document