scholarly journals Biochemical isolation and physiological identification of the egg-laying hormone in Aplysia californica.

1976 ◽  
Vol 68 (2) ◽  
pp. 197-210 ◽  
Author(s):  
S Arch ◽  
P Earley ◽  
T Smock

It has been determined that the bag cells of Aplysia californica produce two polypeptide species that comigrate on electrophoretic gels containing sodium dodecyl sulfate. By this separation procedure both species can be assigned a molecular weight of approximately 6,000. One of these molecules has an Rf of 0.65 on alkaline discontinuous electrophoresis gels, an isoelectric point at pH 4.8, a gel filtration molecular weight of approximately 12,000, and has no known biological function. The other does not enter alkaline disk gels, has an isoelectric point at approximately pH 9.3, shows a gel filtration molecular weight consistent with that determined by SDS gel electrophoresis, and is the egg-laying hormone.

1972 ◽  
Vol 60 (1) ◽  
pp. 102-119 ◽  
Author(s):  
S. Arch

Biosynthesis of the egg-laying hormone in the bag cell neurons of Aplysia californica was studied. Bag cells were incubated with leucine-3H in vitro for 30 min and rinsed for variable periods of time in a chase medium. The distribution of incorporated label among proteins within the cells was assayed by electrophoresis of an homogenate on sodium dodecyl sulfate polyacrylamide gels. Results from rinse times shorter than 30 min revealed that the predominant synthetic product is a 25,000 dalton protein. With longer rinse times, this species was reduced and two species of lower molecular weight became prominent. This redistribution of radioactivity was quantitative and was not prevented by inhibition of protein synthesis during the rinse. A 10°C reduction in temperature (from 15°C) blocked the redistribution. These data are interpreted to indicate that the 25,000 dalton molecule is a precursor which is cleaved enzymatically to yield two lower molecular weight products. One product is a 12,000 dalton molecule which remains in the cell bodies. The other is a molecule of <10,000 daltons which is exported from the somata into the neurohemal regions of the connective tissue. Perfusion of these regions with high [K+] medium results in the release of this product into the medium. It is concluded that this product is the 6000 dalton egg-laying hormone (ELH).


1990 ◽  
Vol 10 (2) ◽  
pp. 131-139
Author(s):  
Oyewole Adeyemo ◽  
E. O. Okegbile ◽  
O. O. Olorunsogo

For the development of immunological contraception, attention is being concentrated on the possibility of using a sperm membrane antigen. Boar sperm membrane was extracted with triton-X 100 and fractionated by Sephadex G-150 column chromatography. The glycosylated and nonglycosylated portions of protein peaks from the gel filtration were obtained by fractionating on concanavalin A-Sepharose and eluting the bound protein with 0.3 M methyl mannoside. A glycosylated fraction was found to induce sperm agglutinating antibodies in rabbit. The partially purified protein has a molecular weight of 30 kilodaltons, as determined by sodium dodecyl polyaccyrlamide gel electrophoresis. Further work is planned on the histochemical determination of the origin of this protein and species cross-activity of the antibody.


1976 ◽  
Vol 159 (1) ◽  
pp. 181-184 ◽  
Author(s):  
N Paskin ◽  
R J Mayer

Fatty acid synthetase purified from the mammary gland of the rabbit has a mol. wt. of 968000 as determined by gel filtration. The enzyme gave one band, corresponding to a mol.wt. of approx. 35000, on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate and phenylmethanesulphonyl fluoride.


1971 ◽  
Vol 122 (5) ◽  
pp. 623-631 ◽  
Author(s):  
Anne M. S. Marr ◽  
A. Neuberger ◽  
Wendy A. Ratcliffe

1. Tamm–Horsfall glycoprotein from rabbit urine has been isolated and characterized. The homogeneity of the preparation has been established by a variety of procedures including disc gel electrophoresis and ultracentrifugation in aqueous solution, sodium dodecyl sulphate and formic acid. 2. The chemical composition has been determined and a carbohydrate content of approx. 31% was obtained. The relative contents of the amino acids were shown to be very similar to those in human Tamm–Horsfall glycoprotein. A trace of lipid was also detected. 3. Leucine was identified as the only N-terminal amino acid. 4. The subunit structure was investigated in the presence of sodium dodecyl sulphate by gel filtration and disc gel electrophoresis. These studies indicated that the subunit possessed a molecular weight of approx. 84000±6000. A similar value was obtained after reduction and S-alkylation of the glycoprotein indicating that the disulphide bonds were all intrachain. 5. A minimum value for the chemical molecular weight of 85000±6000 was obtained from the number of N-terminal amino acids released by cyanogen bromide cleavage of the glycoprotein. 6. The immunological properties of the glycoprotein were studied. Cross reactivity was demonstrated between human Tamm–Horsfall glycoprotein and a guinea-pig anti-rabbit Tamm–Horsfall antiserum.


1999 ◽  
Vol 67 (8) ◽  
pp. 4014-4018 ◽  
Author(s):  
Hisaaki Sato ◽  
Takao Watanabe ◽  
Yasuko Murata ◽  
Ayumi Ohtake ◽  
Mayumi Nakamura ◽  
...  

ABSTRACT A new serotype of Staphylococcus hyicus exfoliative toxin (SHET), serotype B, was isolated from the culture filtrate of a plasmid-carrying strain of S. hyicus. The new SHET was purified by precipitation with 70% saturated ammonium sulfate, gel filtration on a Sephadex G-75 column, column chromatography on DEAE–Cellulofine A-500, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The new SHET caused exfoliation of the epidermis as determined by the so-called Nikolsky sign when inoculated into 1-day-old chickens. The new SHET was serologically different fromStaphylococcus aureus exfoliative toxins (ETs) (ETA, ETB, and ETC) and from the SHET from the plasmidless strain but showed the same molecular weight as the other serotypes of toxins on SDS-PAGE. It was thermolabile and lost its toxicity after being heated at 60°C for 30 min. We propose that the new SHET be designated SHETB and that the SHET produced by the plasmidless strain be designated SHETA.


1972 ◽  
Vol 59 (1) ◽  
pp. 47-59 ◽  
Author(s):  
S. Arch

In vitro studies of the secretory behavior of the parietovisceral ganglion in Aplysia californica were performed. The aim of these studies was to investigate the release of polypeptides in response to depolarizing stimuli, and, in particular, to determine if a specific polypeptide known to induce egg laying in the intact animal is secreted into the bathing medium. During continuous perfusion of a ganglion preincubated in leucine-3H the application of either high-potassium medium or a burst of electrical stimuli (via the pleurovisceral connective nerve) evoked a marked increase in the amount of trichloroacetic acid (TCA)-precipitable radioactivity recovered in the perfusate. Enhanced release could be detected within 80 sec of the initial exposure to high potassium; however, incubation of a ganglion in calcium-free media before the application of high-potassium medium abolished the increase of precipitable radioactivity. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of perfusate samples revealed a significant change in the polypeptide species washed from the ganglion during high-potassium depolarization. Bioassays confirmed that egg laying is induced when high-potassium medium used to bathe a ganglion is injected into a recipient animal. These and other results permit the conclusion that the bulk of the polypeptide material secreted from the ganglion in response to depolarization is a specific neurohormone produced by two identified cell clusters, the so-called bag cells.


1981 ◽  
Vol 197 (2) ◽  
pp. 427-436 ◽  
Author(s):  
G A Nimmo ◽  
J R Coggins

Neurospora crassa contains three isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, which are inhibited by tyrosine, tryptophan and phenylalanine respectively, and it was estimated that the relative proportions of the total activity were 54%, 14% and 32% respectively. The tryptophan-sensitive isoenzyme was purified to homogeneity as judged by polyacrylamide-gel electrophoresis and ultracentrifugation. The tyrosine-sensitive and phenylalanine-sensitive isoenzymes were only partially purified. The three isoenzymes were completely separated from each other, however, and can be distinguished by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and Ultrogel AcA-34 and polyacrylamide-gel electrophoresis. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the tryptophan-sensitive isoenzyme contained one type of subunit of molecular weight 52000. The molecular weight of the native enzyme was found to be 200000 by sedimentation-equilibrium centrifugation, indicating that the enzyme is a tetramer, and the results of cross-linking and gel-filtration studies were in agreement with this conclusion.


1975 ◽  
Vol 151 (3) ◽  
pp. 685-697 ◽  
Author(s):  
M Letarte-Muirhead ◽  
A N Barclay ◽  
A F Williams

The Thy-1-molecule, which was identified by its antigenic activities, has been purified from rat thymocytes. The purification involved preparation of crude membranes and solubilization in deoxycholate, followed by gel filtration and affinity chromatography on antibody or lectin columns. In all cases the purified molecule was a glycoprotein that did not form higher polymers and was not associated with other polypeptide chains. The Thy-1 glycoprotein could be found in two forms, one binding to lentil lectin, the other not. Both forms had the same detectable antigens and were of a similar but not identical size. After sodium dodecyl sulphate-polyacrylamide-gel electrophoresis the apparent molecular weight of Thy-1 binding to lentil lectin was 25 000, whereas that not binding to the lectin was 27 000, with heterogeneity towards forms of apparently higher molecular weight.


1988 ◽  
Vol 66 (8) ◽  
pp. 830-838 ◽  
Author(s):  
R. E. Huber ◽  
R. L. Brockbank

A broad-specificity β-glycosidase from porcine kidney was purified to homogeneity. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis showed that it had a monomeric molecular weight of 55 000–60 000. Gel filtration showed a native molecular weight of about 115 000. These data imply that the native enzyme is a dimer. The enzyme can catalyze the hydrolysis of β bonds between glycosides and 4-methylumbelliferone or nitrophenol yielding D-fucopyranose, D-galactopyranose, D-glucopyranose, D-xylopyranose, and D-mannopyranose and of α bonds to yield L-arabinopyranose. This is the first study that shows a mammalian broad-specificity cytosolic β-glycosidase carrying out a reaction with a β-D-mannopyranoside. The nature of the broad specificity was studied with inhibitors. Similar inhibitor constants were found regardless of whether the substrate was a β-D-glucopyranoside or a β-D-galactopyranoside, so the enzyme probably has only one binding site with a broad specificity. The enzyme prefers to bind compounds with an axial hydroxyl at the 2 position and an equatorial hydroxyl at the 4 position; the 3 position does not affect binding significantly. The hydroxyl at the 6 position affects binding, but binding at that position depends on the configurations at the 2 and 4 positions. Thus, there must be some interactions between these three positions (2, 4, and 6). Lactones are also good inhibitors and this may relate to strain effects.


1980 ◽  
Vol 189 (2) ◽  
pp. 247-253 ◽  
Author(s):  
T M Turpeenniemi-Hujanen ◽  
U Puistola ◽  
K I Kivirikko

Two procedures are reported for the purification of lysyl hydroxylase, both procedures involving (NH4)2SO4 fractionation, affinity chromatography on concanavalin A-agarose and elution of the column with ethylene glycol. The additional steps in procedure A consist of gel filtration and chromatography on a hydroxyapatite column, and in procedure B of affinity chromatography on collagen linked to agarose and gel filtration. The best preparations obtained with either of the two procedures were pure when examined by sodium dodecyl sulphate-polyacrylamide-disc-gel or slab-gel electrophoresis, but about half of the preparations obtained by procedure A had minor contaminants. The specific activity of a typical preparation purified by procedure B was 13 4000 times that of the 15 000 g supernatant of the chick-embryo homogenate, with a recovery of about 4%. The molecular weight of the pure enzyme was bout 200 000 by gel filtration, and that of the enzyme subunit about 85 000 by sodium dodecyl sulphate/polyacrylamide-disc-gel or slab-gel electrophoresis. It is suggested that the active enzyme is a dimer consisting of only one type of monomer, and that a previously described enzyme form with an apparent molecular weight of about 550 000 is a polymeric form of this dimer. The catalytic-centre activity of the pure enzyme, as determined with a saturating concentration of a synthetic peptide substrate and under conditions specified, was about 3-4 mol/s per mol.


Sign in / Sign up

Export Citation Format

Share Document