scholarly journals Interactions of monovalent cations with sodium channels in squid axon. I. Modification of physiological inactivation gating.

1985 ◽  
Vol 85 (4) ◽  
pp. 583-602 ◽  
Author(s):  
G S Oxford ◽  
J Z Yeh

Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.

1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


1989 ◽  
Vol 94 (5) ◽  
pp. 937-951 ◽  
Author(s):  
G Cota ◽  
E Stefani

Inactivation of slow Ca2+ channels was studied in intact twitch skeletal muscle fibers of the frog by using the three-microelectrode voltage-clamp technique. Hypertonic sucrose solutions were used to abolish contraction. The rate constant of decay of the slow Ca2+ current (ICa) remained practically unchanged when the recording solution containing 10 mM Ca2+ was replaced by a Ca2+-buffered solution (126 mM Ca-maleate). The rate constant of decay of ICa monotonically increased with depolarization although the corresponding time integral of ICa followed a bell-shaped function. The replacement of Ca2+ by Ba2+ did not result in a slowing of the rate of decay of the inward current nor did it reduce the degree of steady-state inactivation. The voltage dependence of the steady-state inactivation curve was steeper in the presence of Ba2+. In two-pulse experiments with large conditioning depolarizations ICa inactivation remained unchanged although Ca2+ influx during the prepulse greatly decreased. Dantrolene (12 microM) increased mechanical threshold at all pulse durations tested, the effect being more prominent for short pulses. Dantrolene did not significantly modify ICa decay and the voltage dependence of inactivation. These results indicate that in intact muscle fibers Ca2+ channels inactivate in a voltage-dependent manner through a mechanism that does not require Ca2+ entry into the cell.


2011 ◽  
Vol 300 (3) ◽  
pp. C567-C575 ◽  
Author(s):  
Hee Jae Kim ◽  
Hye Sook Ahn ◽  
Bok Hee Choi ◽  
Sang June Hahn

The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K+ (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC50 of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. Orthovanadate, an inhibitor of protein phosphatases, did not reverse the inhibition of Kv4.3 by genistein. We also tested the effects of two inactive structural analogs: genistin and daidzein. Whereas Kv4.3 was unaffected by genistin, daidzein inhibited Kv4.3, albeit with a lower potency. Genistein did not affect the activation and inactivation kinetics of Kv4.3. Genistein-induced inhibition of Kv4.3 was voltage dependent with a steep increase over the channel opening voltage range. In the full-activation voltage range positive to +20 mV, no voltage-dependent inhibition was found. Genistein had no significant effect on steady-state activation, but shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. The Ki for the interaction between genistein and the inactivated state of Kv4.3, which was estimated from the concentration-dependent shift in the steady-state inactivation curve, was 1.17 μM. Under control conditions, closed-state inactivation was fitted to a single exponential function, and genistein accelerated closed-state inactivation. Genistein induced a weak use-dependent inhibition. These results suggest that genistein directly inhibits Kv4.3 by interacting with the closed-inactivated state of Kv4.3 channels. This effect is not mediated via inhibition of the PTK activity, because other types of PTK inhibitors could not prevent the inhibitory action of genistein.


2007 ◽  
Vol 292 (5) ◽  
pp. C1714-C1722 ◽  
Author(s):  
Hye Sook Ahn ◽  
Sung Eun Kim ◽  
Bok Hee Choi ◽  
Jin-Sung Choi ◽  
Myung-Jun Kim ◽  
...  

The interaction of FK-506 with KV1.3, stably expressed in Chinese hamster ovary cells, was investigated with the whole cell patch-clamp technique. FK-506 inhibited KV1.3 in a reversible, concentration-dependent manner with an IC50 of 5.6 μM. Rapamycin, another immunosuppressant, produced effects that were similar to those of FK-506 (IC50 = 6.7 μM). Other calcineurin inhibitors (cypermethrin or calcineurin autoinhibitory peptide) alone had no effect on the amplitude or kinetics of KV1.3. In addition, the inhibitory action of FK-506 continued, even after the inhibition of calcineurin activity. The inhibition produced by FK-506 was voltage dependent, increasing in the voltage range for channel activation. At potentials positive to 0 mV (where maximal conductance is reached), however, no voltage-dependent inhibition was found. FK-506 exhibited a strong use-dependent inhibition of KV1.3. FK-506 shifted the steady-state inactivation curves of KV1.3 in the hyperpolarizing direction in a concentration-dependent manner. The apparent dissociation constant for FK-506 to inhibit KV1.3 in the inactivated state was estimated from the concentration-dependent shift in the steady-state inactivation curve and was calculated to be 0.37 μM. Moreover, the rate of recovery from inactivation of KV1.3 was decreased. In inside-out patches, FK-506 not only reduced the current amplitude but also accelerated the rate of inactivation during depolarization. FK-506 also inhibited KV1.5 and KV4.3 in a concentration-dependent manner with IC50 of 4.6 and 53.9 μM, respectively. The present results indicate that FK-506 inhibits KV1.3 directly and that this effect is not mediated via the inhibition of the phosphatase activity of calcineurin.


2007 ◽  
Vol 292 (3) ◽  
pp. C1078-C1086 ◽  
Author(s):  
Haiyan Chen ◽  
Erika S. Piedras-Rentería

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease of the cerebellum and inferior olives characterized by a late-onset cerebellar ataxia and selective loss of Purkinje neurons ( 15 , 16 ). SCA6 arises from an expansion of the polyglutamine tract located in exon 47 of the α1A (P/Q-type calcium channel) gene from a nonpathogenic size of 4 to 18 glutamines (CAG4–18) to CAG19–33 in SCA6. The molecular basis of SCA6 is poorly understood. To date, the biophysical properties studied in heterologous systems support both a gain and a loss of channel function in SCA6. We studied the behavior of the human α1A isoform, previously found to elicit a gain of function in disease ( 41 ), focusing on properties in which the COOH terminus of the channel is critical for function: we analyzed the current properties in the presence of β4- and β2a-subunits (both known to interact with the α1A COOH terminus), current kinetics of activation and inactivation, calcium-dependent inactivation and facilitation, voltage-dependent inactivation, frequency dependence, and steady-state activation and inactivation properties. We found that SCA6 channels have decreased activity-dependent inactivation and a depolarizing shift (+6 mV) in steady-state inactivation properties consistent with a gain of function.


1993 ◽  
Vol 264 (2) ◽  
pp. H470-H478 ◽  
Author(s):  
J. M. Quayle ◽  
J. G. McCarron ◽  
J. R. Asbury ◽  
M. T. Nelson

Unitary currents through single calcium channels were measured from cell-attached patches on smooth muscle cells isolated from resistance-sized branches of posterior cerebral arteries from Wistar-Kyoto normotensive rats. Barium (80 and 10 mM) was used as the charge carrier, with and without the dihydropyridine calcium channel agonist BAY R 5417. Unitary currents decreased on membrane depolarization, with a slope conductance of 19.4 pS (80 mM barium). Channel open-state probability (Po) was steeply voltage dependent. Peak Po during test pulses from -70 mV increased e-fold per 4.5-mV depolarization. Mean peak Po at potentials positive to +10 mV was 0.44. Po at steady membrane potentials was also steeply voltage dependent, changing e-fold per 4.5 mV in the absence of inactivation. Steady-state Po at positive potentials was substantially lower than peak Po elicited by test pulses, suggesting that steady-state inactivation can reduce Po by as much as 10-fold. Membrane depolarization decreased the longest mean closed time but had little effect on the mean open time of single calcium channels measured during steady-state recordings. Lowering the external barium concentration from 80 to 10 mM reduced the single channel conductance to 12.4 pS and shifted the relationship between steady-state Po and membrane potential by about -30 mV. BAY R 5417 also shifted this relationship by about -15 mV.


2007 ◽  
Vol 293 (2) ◽  
pp. C783-C789 ◽  
Author(s):  
Christian Rosker ◽  
Birgit Lohberger ◽  
Doris Hofer ◽  
Bibiane Steinecker ◽  
Stefan Quasthoff ◽  
...  

The blocking efficacy of 4,9-anhydro-TTX (4,9-ah-TTX) and TTX on several isoforms of voltage-dependent sodium channels, expressed in Xenopus laevis oocytes, was tested (Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, and Nav1.8). Generally, TTX was 40–231 times more effective, when compared with 4,9-ah-TTX, on a given isoform. An exception was Nav1.6, where 4,9-ah-TTX in nanomole per liter concentrations sufficed to result in substantial block, indicating that 4,9-ah-TTX acts specifically at this peculiar isoform. The IC50 values for TTX/4,9-ah-TTX were as follows (in nmol/l): 7.8 ± 1.3/1,260 ± 121 (Nav1.2), 2.8 ± 2.3/341 ± 36 (Nav1.3), 4.5 ± 1.0/988 ± 62 (Nav1.4), 1,970 ± 565/78,500 ± 11,600 (Nav1.5), 3.8 ± 1.5/7.8 ± 2.3 (Nav1.6), 5.5 ± 1.4/1,270 ± 251 (Nav1.7), and 1,330 ± 459/>30,000 (Nav1.8). Analysis of approximal half-maximal doses of both compounds revealed minor effects on voltage-dependent activation only, whereas steady-state inactivation was shifted to more negative potentials by both TTX and 4,9-ah-TTX in the case of the Nav1.6 subunit, but not in the case of other TTX-sensitive ones. TTX shifted steady-state inactivation also to more negative potentials in case of the TTX-insensitive Nav1.5 subunit, where it also exerted profound effects on the time course of recovery from inactivation. Isoform-specific interaction of toxins with ion channels is frequently observed in the case of proteinaceous toxins. Although the sensitivity of Nav1.1 to 4,9-ah-TTX is not known, here we report evidence on a highly isoform-specific TTX analog that may well turn out to be an invaluable tool in research for the identification of Nav1.6-mediated function, but also for therapeutic intervention.


2020 ◽  
Vol 52 (3) ◽  
pp. 320-327 ◽  
Author(s):  
Jin Ryeol An ◽  
Hojung Kang ◽  
Hongliang Li ◽  
Mi Seon Seo ◽  
Hee Seok Jung ◽  
...  

Abstract In this study, we explore the inhibitory effects of protriptyline, a tricyclic antidepressant drug, on voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Protriptyline inhibited the vascular Kv current in a concentration-dependent manner, with an IC50 value of 5.05 ± 0.97 μM and a Hill coefficient of 0.73 ± 0.04. Protriptyline did not affect the steady-state activation kinetics. However, the drug shifted the steady-state inactivation curve to the left, suggesting that protriptyline inhibited the Kv channels by changing their voltage sensitivity. Application of 20 repetitive train pulses (1 or 2 Hz) progressively increased the protriptyline-induced inhibition of the Kv current, suggesting that protriptyline inhibited Kv channels in a use (state)-dependent manner. The extent of Kv current inhibition by protriptyline was similar during the first, second, and third step pulses. These results suggest that protriptyline-induced inhibition of the Kv current mainly occurs principally in the closed state. The increase in the inactivation recovery time constant in the presence of protriptyline also supported use (state)-dependent inhibition of Kv channels by the drug. In the presence of the Kv1.5 inhibitor, protriptyline did not induce further inhibition of the Kv channels. However, pretreatment with a Kv2.1 or Kv7 inhibitor induced further inhibition of Kv current to a similar extent to that observed with protriptyline alone. Thus, we conclude that protriptyline inhibits the vascular Kv channels in a concentration- and use-dependent manner by changing their gating properties. Furthermore, protriptyline-induced inhibition of Kv channels mainly involves the Kv1.5.


2000 ◽  
Vol 279 (1) ◽  
pp. H35-H46 ◽  
Author(s):  
Yong-Fu Xiao ◽  
Sterling N. Wright ◽  
Ging Kuo Wang ◽  
James P. Morgan ◽  
Alexander Leaf

Voltage-gated cardiac Na+ channels are composed of α- and β1-subunits. In this study β1-subunit was cotransfected with the α-subunit of the human cardiac Na+ channel (hH1α) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na+currents were assessed. Current density was significantly greater in HEK293t cells coexpressing α- and β1-subunits ( I Na,αβ) than in HEK293t cells expressing α-subunit alone ( I Na,α). Compared with I Na,α, the voltage-dependent inactivation and activation of I Na,αβ were significantly shifted in the depolarizing direction. In addition, coexpression with β1-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n–3)] significantly reduced I Na,αβ in a concentration-dependent manner and at 5 μM shifted the midpoint voltage of the steady-state inactivation by −22 ± 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n–3)], α-linolenic acid [C18:3(n–3)], and conjugated linoleic acid [C18:2(n–6)] at 5 μM significantly inhibited both I Na,αβ and I Na,α.In contrast, saturated and monounsaturated fatty acids had no effects on I Na,αβ. This finding differs from the results for I Na,α, which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of β1-subunit with hH1α modifies the kinetics and fatty acid block of the Na+ channel.


1979 ◽  
Vol 73 (1) ◽  
pp. 1-21 ◽  
Author(s):  
J Z Yeh

The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, the frequency-dependent block disappears, whereas the voltage-dependent block remains unchanged. A time-dependent decrease in Na currents indicative of direct block of Na channel by drug molecule follows a single exponential function with a time constant of 2.0 +/- 0.18 and 1.0 +/- 0.19 ms (at 10 degrees C and 80 m V) for 30 and 100 microM 9-aminoacridine, respectively. A steady-state block can be achieved during a single 8-ms depolarizing pulse when the h gate has been removed. The block in the h-gate intact axon can be achieved only with multiple conditioning pulses. The voltage-dependent block suggests that 9-aminoacridine binds to a site located halfway across the membrane with a dissociation constant of 62 microM at 0 m V. 9-Aminoacridine also blocks K channels, and the block is time- and voltage-dependent.


Sign in / Sign up

Export Citation Format

Share Document