The Crab Nebula as a Radio Source.

1953 ◽  
Vol 118 ◽  
pp. 1 ◽  
Author(s):  
Jesse L. Greenstein ◽  
Rudolph Minkowski
1957 ◽  
Vol 4 ◽  
pp. 313-317
Author(s):  
V. V. Vitkevitch

A new method for the investigation of the solar corona, suggested by us (Vitkevitch, 1951) [1], consists of observing the radio source identified with the Crab nebula (NGC 1952; α = 05h 31m 40s, δ = 22° 10′) when it is covered by the solar corona. This occurs every year on 14–15 June.


1959 ◽  
Vol 9 ◽  
pp. 47-49
Author(s):  
B. Elsmore

Observations of a lunar occultation of a radio source may provide information concerning both the distribution of radio “brightness” across the source and its accurate position. For sources of which these results are already fairly well known, observations at long wavelengths may be used to derive the density of the lunar atmosphere [1]. During recent years two such occultations have been observed at Cambridge: one, the occultation of IC 443, the large-diameter radio source in the constellation of Gemini, from which the density of the lunar atmosphere was estimated to be less than 10–12 of that of the density of the terrestrial atmosphere [2] and [3]; and two, the occultation of the Crab nebula on 1956 January 24 [4].


Nature ◽  
1967 ◽  
Vol 213 (5082) ◽  
pp. 1213-1214 ◽  
Author(s):  
J. F. R. GOWER

Author(s):  
Yuji KISHIMOTO ◽  
Shuichi GUNJI ◽  
Yushi ISHIKAWA ◽  
Makoto TAKADA ◽  
Tatehiro MIHARA ◽  
...  
Keyword(s):  

1999 ◽  
Vol 512 (2) ◽  
pp. 755-760 ◽  
Author(s):  
Mitchell C. Begelman
Keyword(s):  

1983 ◽  
Vol 101 ◽  
pp. 499-501
Author(s):  
Gregory Benford ◽  
Attilio Ferrari ◽  
Silvano Massaglia

Canonical models for pulsars predict the emission of low–frequency waves of large amplitudes, produced by the rotation of a neutron star possessing a strong surface magnetic field. Pacini (1968) proposed this as the basic drain which yields to the pulsar slowing–down rate. The main relevance of the large amplitude wave (LAW) is the energetic link it provides between the pulsar and the surrounding medium. This role has been differently emphasized (Rees and Gunn, 1974; Ferrari, 1974), referring to absorption effects by relativistic particle acceleration and thermal heating, either close to the pulsar magnetosphere or in the nebula. It has been analyzed in the special case of the Crab Nebula, where observations are especially rich (Rees, 1971). As the Crab Nebula displays a cavity around the pulsar of dimension ∼1017cm, the function of the wave in sweeping dense gas away from the circumpulsar region is widely accepted. Absorption probably occurs at the inner edges of the nebula; i.e., where the wave pressure and the nebular pressure come into balance. Ferrari (1974) interpreted the wisps of the Crab Nebula as the region where plasma absorption occurs, damping the large amplitude wave and driving “parametric” plasma turbulence, thus trasferring energy to optical radiation powering the nebula. The mechanism has been extended to interpret the specific features of the “wisps” emission (Benford et al., 1978). Possibly the wave fills the nebula completely, permeating the space outside filaments with electromagnetic energy, continuously accelerating electrons for the extended radio and optical emission (Rees, 1971).


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2020 ◽  
Author(s):  
Satoru Katsuda ◽  
Hitoshi Fujiwara ◽  
Yoshitaka Ishisaki ◽  
Yoshitomo Maeda ◽  
Koji Mori ◽  
...  

1968 ◽  
Vol 46 (10) ◽  
pp. S638-S641 ◽  
Author(s):  
D. B. Melrose

The acceleration of ions from thermal velocities is analyzed to determine conditions under which heavy ions can be preferentially accelerated. Two accelerating mechanisms involving high-and low-frequency hydromagnetic waves respectively are considered. Preferential acceleration of heavy ions occurs for high-frequency waves if the frequency spectrum falls off faster than (frequency)−1. For the low-frequency waves heavy ions are less effectively accelerated than lighter ions. However, very heavy ions can be preferentially accelerated, the abundances of the very heavy ions being enhanced by a factor Ai over the thermal abundances. Acceleration of ions in the envelope of the Crab nebula is considered as an example.


Sign in / Sign up

Export Citation Format

Share Document