Preferential acceleration of heavy ions from thermal velocities

1968 ◽  
Vol 46 (10) ◽  
pp. S638-S641 ◽  
Author(s):  
D. B. Melrose

The acceleration of ions from thermal velocities is analyzed to determine conditions under which heavy ions can be preferentially accelerated. Two accelerating mechanisms involving high-and low-frequency hydromagnetic waves respectively are considered. Preferential acceleration of heavy ions occurs for high-frequency waves if the frequency spectrum falls off faster than (frequency)−1. For the low-frequency waves heavy ions are less effectively accelerated than lighter ions. However, very heavy ions can be preferentially accelerated, the abundances of the very heavy ions being enhanced by a factor Ai over the thermal abundances. Acceleration of ions in the envelope of the Crab nebula is considered as an example.

2008 ◽  
pp. 87-99 ◽  
Author(s):  
A. Andic

High-frequency waves (5 mHz to 20 mHz) have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analyzed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.


Nature ◽  
1970 ◽  
Vol 225 (5237) ◽  
pp. 1035-1037 ◽  
Author(s):  
A. H. BRIDLE

1983 ◽  
Vol 101 ◽  
pp. 499-501
Author(s):  
Gregory Benford ◽  
Attilio Ferrari ◽  
Silvano Massaglia

Canonical models for pulsars predict the emission of low–frequency waves of large amplitudes, produced by the rotation of a neutron star possessing a strong surface magnetic field. Pacini (1968) proposed this as the basic drain which yields to the pulsar slowing–down rate. The main relevance of the large amplitude wave (LAW) is the energetic link it provides between the pulsar and the surrounding medium. This role has been differently emphasized (Rees and Gunn, 1974; Ferrari, 1974), referring to absorption effects by relativistic particle acceleration and thermal heating, either close to the pulsar magnetosphere or in the nebula. It has been analyzed in the special case of the Crab Nebula, where observations are especially rich (Rees, 1971). As the Crab Nebula displays a cavity around the pulsar of dimension ∼1017cm, the function of the wave in sweeping dense gas away from the circumpulsar region is widely accepted. Absorption probably occurs at the inner edges of the nebula; i.e., where the wave pressure and the nebular pressure come into balance. Ferrari (1974) interpreted the wisps of the Crab Nebula as the region where plasma absorption occurs, damping the large amplitude wave and driving “parametric” plasma turbulence, thus trasferring energy to optical radiation powering the nebula. The mechanism has been extended to interpret the specific features of the “wisps” emission (Benford et al., 1978). Possibly the wave fills the nebula completely, permeating the space outside filaments with electromagnetic energy, continuously accelerating electrons for the extended radio and optical emission (Rees, 1971).


1994 ◽  
Vol 142 ◽  
pp. 797-806
Author(s):  
Jonathan Arons ◽  
Marco Tavani

AbstractWe discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized—the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put ~20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) ∝ E−2, where N(E)dE is the number of particles with energy between E and E + dE.The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be γ±m±c2 = mic2γ1/Zi, where γ1 is the Lorentz factor of the upstream flow and Zi, is the atomic number of the ions. The shock’s spatial structure is shown to contain a series of “overshoots” in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value.This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the “wisps,” surface brightness enhancements near the pulsar. We argue that these surface brightness enhancements are the regions of magnetic overshoot, which appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar’s wind in the Crab Nebula is spatially resolved, and allows one to measure γ1, and a number of other properties of the pulsar’s wind. We also discuss applications of the shock theory to the termination shocks of the winds from rotation-powered pulsars embedded in compact binaries. We show that this model adequately accounts for (and indeed predicted) the recently discovered X-ray flux from PSR 1957+20, and we discuss several other applications to other examples of these systems.Subject headings: acceleration of particles — ISM: individual (Crab Nebula) — relativity — shock waves


Author(s):  
Takashi Tanaka ◽  
Arata Masuda ◽  
Akira Sone

This study presents the integrity diagnosis method of the bolted joint based on nonlinear wave modulation. When the structure that has the contact interface is vibrating at low-frequency, the contact interface is tapping and clapping due to low-frequency vibration. In this condition, the scatter characteristics, such as wave transmissivity and reflectivity, of high-frequency waves in vicinity of the contact interface are fluctuated in synchronization with low-frequency excitation because of the contact acoustic nonlinearity. The time fluctuation of reflection intensity, which expresses the reflectivity in the specific location, of high-frequency waves at the contact interface is given as the reflection intensity map which plots time-spatial map. In this paper, experiment using the beam specimen which has single bolted joint is conducted to examine the performance of the evaluation index based on the fluctuation amplitude of reflection intensity.


2014 ◽  
Vol 92 (6) ◽  
pp. 476-480 ◽  
Author(s):  
Divanei Zaniqueli ◽  
Elis Aguiar Morra ◽  
Eduardo Miranda Dantas ◽  
Marcelo Perim Baldo ◽  
Luciana Carletti ◽  
...  

It has been suggested that the increase in heart rate (HR) at the onset of exercise is caused by vagal withdrawal. In fact, endurance runners show a lower HR in maximum aerobic tests. However, it is still unknown whether endurance runners have a lower HR at 4 s after the onset of exercise (4th-sec-HR). We sought to measure the HR at the onset of the 4 s exercise test (4-sET), clarifying its relationship to heart rate variability (HRV), spectral indices, and cardiac vagal index (CVI) in endurance runners (ER) and healthy untrained controls (CON). HR at 4th-sec-HR, CVI, and percent HR increase during exercise were analyzed in the 4-sET. High frequency spectrum (HF-nu), low frequency spectrum (LF-nu), and low frequency/high frequency band ratio (LF/HF) were analyzed from the HRV. ER showed a significantly higher HF, and both a lower LF and LF/HF ratio compared with the CON. ER presented a significantly lower 4th-sec-HR, although neither CVI nor HR increases during exercise were statistically different from the CON. In conclusion, ER presented a lower 4th-sec-HR secondary to increased vagal influence over the sinus node. CVI seems to be too weak to use for discriminating individuals with respect to the magnitude of HR vagal control.


2012 ◽  
Vol 42 (9) ◽  
pp. 1524-1547 ◽  
Author(s):  
Oliver M. Sun ◽  
Robert Pinkel

Abstract Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, 〈uiw∂Ui/∂z〉, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.


2018 ◽  
Vol 60 (5) ◽  
pp. 1029
Author(s):  
А.В. Савин

AbstractUsing the COMPASS force field, natural linear vibrations of graphane (graphene hydrogenated on both sides) nanoribbons are simulated. The frequency spectrum of a graphane sheet consists of three continuous intervals (low-frequency, mid-frequency, and narrow high-frequency) and two gaps between them. The construction of dispersion curves for nanoribbons with a zigzag and chair structure of the edges show that the frequencies of edge vibrations (edge phonons) can be present in the gaps of the frequency spectrum. In the first type of nanoribbons, two dispersion curves are in the low-frequency gap of the spectrum and four dispersion curves in the second gap. These curves correspond to phonons moving only along the nanoribbon edges (the mean depth of their penetration toward the nanoribbon center does not exceed 0.15 nm).


Sign in / Sign up

Export Citation Format

Share Document