Allee Effects in Metapopulation Dynamics

1998 ◽  
Vol 152 (2) ◽  
pp. 298-302 ◽  
Author(s):  
Priyanga Amarasekare
1998 ◽  
Vol 152 (2) ◽  
pp. 298
Author(s):  
Amarasekare

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 392
Author(s):  
Antonio Pulido-Pastor ◽  
Ana Luz Márquez ◽  
José Carlos Guerrero ◽  
Enrique García-Barros ◽  
Raimundo Real

Metapopulation theory considers that the populations of many species are fragmented into patches connected by the migration of individuals through an interterritorial matrix. We applied fuzzy set theory and environmental favorability (F) functions to reveal the metapopulational structure of the 222 butterfly species in the Iberian Peninsula. We used the sets of contiguous grid cells with high favorability (F ≥ 0.8), to identify the favorable patches for each species. We superimposed the known occurrence data to reveal the occupied and empty favorable patches, as unoccupied patches are functional in a metapopulation dynamics analysis. We analyzed the connectivity between patches of each metapopulation by focusing on the territory of intermediate and low favorability for the species (F < 0.8). The friction that each cell opposes to the passage of individuals was computed as 1-F. We used the r.cost function of QGIS to calculate the cost of reaching each cell from a favorable patch. The inverse of the cost was computed as connectivity. Only 126 species can be considered to have a metapopulation structure. These metapopulation structures are part of the dark biodiversity of butterflies because their identification is not evident from the observation of the occurrence data but was revealed using favorability functions.


Author(s):  
Apolline Louvet ◽  
Nathalie Machon ◽  
Jean‐Baptiste Mihoub ◽  
Alexandre Robert

Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Thomas H. White ◽  
Wilfredo Abreu ◽  
Gabriel Benitez ◽  
Arelis Jhonson ◽  
Marisel Lopez ◽  
...  

The family Psittacidae is comprised of over 400 species, an ever-increasing number of which are considered threatened with extinction. In recent decades, conservation strategies for these species have increasingly employed reintroduction as a technique for reestablishing populations in previously extirpated areas. Because most Psittacines are highly social and flocking species, reintroduction efforts may face the numerical and methodological challenge of overcoming initial Allee effects during the critical establishment phase of the reintroduction. These Allee effects can result from failures to achieve adequate site fidelity, survival and flock cohesion of released individuals, thus jeopardizing the success of the reintroduction. Over the past 20 years, efforts to reestablish and augment populations of the critically endangered Puerto Rican parrot (Amazona vittata) have periodically faced the challenge of apparent Allee effects. These challenges have been mitigated via a novel release strategy designed to promote site fidelity, flock cohesion and rapid reproduction of released parrots. Efforts to date have resulted in not only the reestablishment of an additional wild population in Puerto Rico, but also the reestablishment of the species in the El Yunque National Forest following its extirpation there by the Category 5 hurricane Maria in 2017. This promising release strategy has potential applicability in reintroductions of other psittacines and highly social species in general.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Kamrun Nahar Keya ◽  
Md. Kamrujjaman ◽  
Md. Shafiqul Islam

AbstractIn this paper, we consider a reaction–diffusion model in population dynamics and study the impact of different types of Allee effects with logistic growth in the heterogeneous closed region. For strong Allee effects, usually, species unconditionally die out and an extinction-survival situation occurs when the effect is weak according to the resource and sparse functions. In particular, we study the impact of the multiplicative Allee effect in classical diffusion when the sparsity is either positive or negative. Negative sparsity implies a weak Allee effect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee effect, and the population extinct without any condition. The influence of Allee effects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability conditions and the region of positive solutions (multiple solutions may exist) are presented. When the diffusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis. We present a number of numerical examples to verify analytical results.


Sign in / Sign up

Export Citation Format

Share Document