scholarly journals A Long Observation of NGC 5548 byBeppoSAX: The High‐Energy Cutoff, Intrinsic Spectral Variability, and a Truly Warm Absorber

2000 ◽  
Vol 536 (2) ◽  
pp. 718-728 ◽  
Author(s):  
Fabrizio Nicastro ◽  
Luigi Piro ◽  
Alessandra De Rosa ◽  
Marco Feroci ◽  
Paola Grandi ◽  
...  
Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Haritma Gaur

The synchrotron hump of the high energy peaked blazars generally lies in the 0.1–10 keV range and such sources show extreme flux and spectral variability in X-ray bands. Various spectral studies showed that the X-ray spectra of high energy peaked blazars are curved and better described by the log-parabolic model. The curvature is attributed to the energy dependent statistical acceleration mechanism. In this work, we review the X-ray spectral studies of high energy peaked blazars. It is found that the log-parabolic model well describes the spectra in a wide energy interval around the peak. The log-parabolic model provides the possibility of investigating the correlation between the spectral parameters derived from it. Therefore, we compiled the studies of correlations between the various parameters derived from the log-parabolic model and their implications to describe the variability mechanism of blazars.


2015 ◽  
Vol 808 (2) ◽  
pp. L37 ◽  
Author(s):  
Javier A. García ◽  
Thomas Dauser ◽  
James F. Steiner ◽  
Jeffrey E. McClintock ◽  
Mason L. Keck ◽  
...  

2020 ◽  
Vol 494 (4) ◽  
pp. 6012-6029 ◽  
Author(s):  
D J Walton ◽  
C Pinto ◽  
M Nowak ◽  
M Bachetti ◽  
R Sathyaprakash ◽  
...  

ABSTRACT We present results from the major coordinated X-ray observing programme on the ULX NGC 1313 X-1 performed in 2017, combining XMM–Newton, Chandra, and NuSTAR, focusing on the evolution of the broad-band (∼0.3–30.0 keV) continuum emission. Clear and unusual spectral variability is observed, but this is markedly suppressed above ∼10–15 keV, qualitatively similar to the ULX Holmberg IX X-1. We model the multi-epoch data with two-component accretion disc models designed to approximate super-Eddington accretion, allowing for both a black hole and a neutron star accretor. With regards to the hotter disc component, the data trace out two distinct tracks in the luminosity–temperature plane, with larger emitting radii and lower temperatures seen at higher observed fluxes. Despite this apparent anticorrelation, each of these tracks individually shows a positive luminosity–temperature relation. Both are broadly consistent with L ∝ T4, as expected for blackbody emission with a constant area, and also with L ∝ T2, as may be expected for an advection-dominated disc around a black hole. We consider a variety of possibilities for this unusual behaviour. Scenarios in which the innermost flow is suddenly blocked from view by outer regions of the super-Eddington disc/wind can explain the luminosity–temperature behaviour, but are difficult to reconcile with the lack of strong variability at higher energies, assuming this emission arises from the most compact regions. Instead, we may be seeing evidence for further radial stratification of the accretion flow than is included in the simple models considered, with a combination of winds and advection resulting in the suppressed high-energy variability.


2015 ◽  
Vol 22 (4) ◽  
pp. 930-935 ◽  
Author(s):  
Ruben Reininger ◽  
Zunping Liu ◽  
Gilles Doumy ◽  
Linda Young

The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) reveals that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick–Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.


2018 ◽  
Vol 863 (1) ◽  
pp. 71 ◽  
Author(s):  
Ji-Xian Zhang ◽  
Jun-Xian Wang ◽  
Fei-Fan Zhu

2000 ◽  
Vol 195 ◽  
pp. 303-310
Author(s):  
A. V. Olinto

The surprising lack of a high energy cutoff in the cosmic ray spectrum at the highest energies, together with an apparently isotropic distribution of arrival directions, have strongly challenged most models proposed for the acceleration of ultrahigh energy cosmic rays. Young neutron star winds may be able to explain the mystery. We discuss this recent proposal after summarizing the observational challenge and plausible acceleration sites. Young neutrons star winds differ from alternative models in the predictions for composition, spectrum, and angular distribution, which will be tested in future experiments.


1993 ◽  
Vol 08 (39) ◽  
pp. 3727-3734 ◽  
Author(s):  
S. CHATURVEDI ◽  
V. SRINIVASAN ◽  
R. JAGANNATHAN

The Tamm-Dancoff (TD) deformation of the boson oscillator incorporates a high energy cutoff in its spectrum. It is found that one can obtain a similar deformation of any generalized bosonic oscillator algebra. The Hopf (or ‘quantum’) algebraic aspects of the TD-deformation are discussed. Examples are given.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 2499-2501
Author(s):  
HAROLD STEINACKER

An algebra of functions on q-deformed Anti-de Sitter space [Formula: see text] with star-structure is defined for roots of unity, which is covariant under Uq(so(2, D-1)). The scalar fields have an intrinsic high-energy cutoff, and arise most naturally on products of the quantum AdS space with a classical sphere. Hilbert spaces of scalar fields are constructed.


2016 ◽  
Vol 9 (11) ◽  
pp. 3961-3974 ◽  
Author(s):  
Casper Rutjes ◽  
David Sarria ◽  
Alexander Broberg Skeltved ◽  
Alejandro Luque ◽  
Gabriel Diniz ◽  
...  

Abstract. The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.


2010 ◽  
Vol 725 (2) ◽  
pp. 2344-2348 ◽  
Author(s):  
M. Böttcher ◽  
B. Hivick ◽  
J. Dashti ◽  
K. Fultz ◽  
S. Gupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document