scholarly journals Antigen‐Specific Production of RANTES, Macrophage Inflammatory Protein (MIP)–1α, and MIP‐1β In Vitro Is a Correlate of Reduced Human Immunodeficiency Virus Burden In Vivo

2000 ◽  
Vol 182 (4) ◽  
pp. 1247-1250 ◽  
Author(s):  
John Ferbas ◽  
Janis V. Giorgi ◽  
Shamim Amini ◽  
Kathie Grovit‐Ferbas ◽  
Dorothy J. Wiley ◽  
...  
2000 ◽  
Vol 74 (4) ◽  
pp. 1787-1793 ◽  
Author(s):  
Yosuke Maeda ◽  
Mohamed Foda ◽  
Shuzo Matsushita ◽  
Shinji Harada

ABSTRACT To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.


1999 ◽  
Vol 67 (8) ◽  
pp. 4295-4297 ◽  
Author(s):  
Nicole P. Juffermans ◽  
Annelies Verbon ◽  
Sander J. H. van Deventer ◽  
Henk van Deutekom ◽  
John T. Belisle ◽  
...  

ABSTRACT Levels of interleukin 8 (IL-8), gamma interferon-inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1β (MIP-1β) were elevated in patients with tuberculosis. IP-10 and MCP-1 levels were higher in human immunodeficiency virus (HIV)-seropositive patients than in HIV-seronegative patients with tuberculosis. Lipoarabinomannan induced IL-8, MCP-1, and MIP-1β in vitro, which was partly inhibited by anti-tumor necrosis factor antibody.


1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


1993 ◽  
Vol 178 (2) ◽  
pp. 743-747 ◽  
Author(s):  
L J Montaner ◽  
A G Doyle ◽  
M Collin ◽  
G Herbein ◽  
P Illei ◽  
...  

The mechanisms by which cellular immunity maintains the asymptomatic state after human immunodeficiency virus type 1 (HIV-1) infection are poorly understood. CD4+ T lymphocytes play a complex role in regulating anti-HIV effector pathways, including activation of macrophages, which are themselves implicated in clinical latency and pathogenesis of symptomatic acquired immune deficiency syndrome. We have found that a newly identified T helper type 2 lymphokine, interleukin 13 (IL-13), inhibits HIV-1ADA and Ba-L replication in primary tissue culture-derived macrophages but not in peripheral blood lymphocytes. Viral production in cells was measured by viral protein (p24) and reverse transcriptase levels, while entry was assessed by proviral DNA analysis at timed intervals after infection. Inhibition by IL-13 was dose and time dependent and not mediated through altered viral entry, reverse transcription, or viral release. IL-13 is therefore a candidate cytokine for the suppression of HIV infection within monocytes and macrophages in vivo.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1497-1504 ◽  
Author(s):  
VF Quesniaux ◽  
GJ Graham ◽  
I Pragnell ◽  
D Donaldson ◽  
SD Wolpe ◽  
...  

Abstract A macrophage-derived inhibitor of early hematopoietic progenitors (colony-forming unit-spleen, CFU-A) called stem cell inhibitor was found to be identical to macrophage inflammatory protein-1 alpha (MIP-1 alpha). We investigated the effect of MIP-1 alpha on the earliest stem cells that sustain long-term hematopoiesis in vivo in a competitive bone marrow repopulation assay. Because long-term reconstituting (LTR) stem cells are normally quiescent, an in vivo model was first developed in which they are triggered to cycle. A first 5-fluorouracil (5-FU) injection was used to eliminate later progenitors, causing the LTR stem cells, which are normally resistant to 5-FU, to enter the cell cycle and become sensitive to a second 5-FU injection administered 5 days later. Human MIP-1 alpha administered from day 0 to 7 was unable to prevent the depletion of the LTR stem cells by the second 5-FU treatment, as observed on day 7 in this model, suggesting that the LTR stem cells were not prevented from being triggered into cycle despite the MIP-1 alpha treatment. However, the MIP-1 alpha protocol used here did substantially decrease the number of more mature hematopoietic progenitors (granulocyte-macrophage colony-forming cells [CFC], burst- forming unit-erythroid, CFCmulti, and preCFCmulti) recovered in the bone marrow shortly after a single 5-FU injection. In vitro, MIP-1 alpha had no inhibitory effect on the ability of these progenitors to form colonies. This study confirms the in vivo inhibitory effect of MIP- 1 alpha on subpopulations of hematopoietic progenitors that are activated in myelodepressed animals. However, MIP-1 alpha had no effect on the long-term reconstituting stem cells in vivo under conditions in which it effectively reduced all later progenitors.


Sign in / Sign up

Export Citation Format

Share Document