Expected Constraints on the Generalized Chaplygin Equation of State from Future Supernova Experiments and Gravitational Lensing Statistics

2003 ◽  
Vol 599 (2) ◽  
pp. 829-838 ◽  
Author(s):  
P. T. Silva ◽  
O. Bertolami
2019 ◽  
Vol 35 (06) ◽  
pp. 2050017 ◽  
Author(s):  
Mohammad Reza Mehdizadeh ◽  
Amir Hadi Ziaie

In this work, we investigate wormhole configurations described by a constant redshift function in Einstein-Cubic gravity ( ECG ). We derive analytical wormhole geometries by assuming a particular equation of state ( EoS ) and investigate the possibility that these solutions satisfy the standard energy conditions. We introduce exact asymptotically flat and anti-de Sitter (AdS) spacetimes that admit traversable wormholes. These solutions are obtained by imposing suitable values for the parameters of the theory so that the resulted geometries satisfy the weak energy condition ( WEC ) in the vicinity of the throat, due to the presence of higher-order curvature terms. Moreover, we find that AdS solutions satisfy the WEC throughout the spacetime. A description of the geodesic motion of time-like and null particles is presented for the obtained wormhole solutions. Also, using gravitational lensing effects, observational features of the wormhole structure are discussed.


2003 ◽  
Vol 12 (05) ◽  
pp. 953-962 ◽  
Author(s):  
DEEPAK JAIN ◽  
ABHA DEV ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Recent redshift-distance measurements of Type Ia supernovae (SNe Ia) at cosmological distances suggest that two-third of the energy density of the universe is dominated by dark energy component with an effective negative pressure. This dark energy component is described by the equation of state px= wρx(w ≥ - 1). We use gravitational lensing statistics to constrain the equation of state of this dark energy. We use n(Δθ), the image separation distribution function of lensed quasars, as a tool to probe w. We find that for the observed range of Ωm~ 0.2–0.4, w should lie between -0.8 ≤ w ≤ -0.4 in order to have five lensed quasars in a sample of 867 optical quasars. This limit is highly sensitive to lens and Schechter parameters and the evolution of galaxies.


2003 ◽  
Vol 12 (01) ◽  
pp. 101-119 ◽  
Author(s):  
ABHA DEV ◽  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

In this paper, observational constraints on the cosmic equation of state of dark energy (p = wρ) have been investigated using gravitational lensing statistics. A likelihood analysis of the lens survey has been carried out to constrain the cosmological parameters Ωmand w. Constraints on Ωmand w are obtained in three different models of galaxy evolution: no evolution model (comoving number density of galaxies remain constant), Volmerange and Guiderdoni Model and fast merging model. The last two models consider the number evolution of galaxies in addition to the luminosity evolution. The likelihood analysis shows that for the no-evolution case w ≤ -0.04 and Ωm≤ 0.90 at 1σ (68% confidence level (CL)). Similarly for the Volmerange & Guiderdoni Model the constraints are w ≤ -0.04 and Ωm≤ 0.91 at 1σ. In fast merging model the constraint become weaker and it allows almost the entire range of parameters. For the case of constant Λ (w = -1), all the models permit Ωm= 0.3 with 68% CL, which is consistent with the value of Ωminferred from various other cosmological observations.


2000 ◽  
Vol 15 (16) ◽  
pp. 1023-1029 ◽  
Author(s):  
ZONG-HONG ZHU

By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm, the dark energy density parameter Ωm and its equation of state ωx = px/ρx. It is shown that, the larger the dark energy density and the more negative its pressure, the higher is the gravitational lensing probability. This fact can provide an independent constraint for dark energy.


Author(s):  
Manuel Malaver ◽  
Hamed Daei Kasmaei

In this paper, we found a new model for compact star with charged anisotropic matter distribution considering an extended version of the Chaplygin equation of state. We specify a particular form of the metric potential Z(x) that allows us to solve the Einstein-Maxwell field equations. The obtained model satisfies all physical properties expected in a realistic star such that the expressions for the radial pressure, energy density, metric coefficients, measure of anisotropy and the mass are fully well defined and are regular in the interior of star. The solution obtained in this work can have multiple applications in astrophysics and cosmology.


Sign in / Sign up

Export Citation Format

Share Document