An Investigation of the Bactericidal Effect of Certain Antiseptics and Disinfectants on Some Hospital Isolates of Gram-Negative Bacteria

2003 ◽  
Vol 24 (3) ◽  
pp. 225-227 ◽  
Author(s):  
Melike Tunçay Ekizoglu ◽  
Meral Özalp ◽  
Nedim Sultan ◽  
Deniz Gür

AbstractThe effect of widely used antiseptics and disinfectants on some hospital isolates of gram-negative bacteria was assessed by the quantitative suspension test. Chlorhexidine gluconate (4%), savlon (1:100), and 5.25% sodium hypochlorite were tested. Savlon and chlorhexidine gluconate were effective at in-use concentrations and sodium hypochlorite was effective at 1:50 dilution.

2007 ◽  
Vol 8 (4) ◽  
pp. 27-34 ◽  
Author(s):  
Maryam Memarian ◽  
Mohamad Reza Fazeli ◽  
Hossein Jamalifar ◽  
Ahmad Azimnejad

Abstract Aim Dental impressions are potential sources of bacterial contamination which could eventually lead to transmissible infectious diseases through the blood or saliva. Sodium hypochlorite is an effective disinfectant recommended by the American Dental Association (ADA) in a 1:10 dilution for a ten minute immersion to disinfect irreversible hydrocolloid impressions. As the ADA protocol is sometimes neglected in busy practice settings, this pilot study was designed to determine an efficient and effective protocol for disinfection of irreversible hydrocolloid impressions. Methods and Materials Various concentrations of sodium hypochlorite and disinfection times were challenged against irreversible hydrocolloid impressions contaminated with six Gram-positive and Gram-negative bacteria. Results A two minute immersion time in a 0.6% solution of sodium hypochlorite protocol was found to prevent bacterial growth on the impressions. Conclusion Disinfection of irreversible hydrocolloid impressions in a 0.6% solution of sodium hypochlorite for two minutes was as effective as the ADA's protocol of using a 0.5% sodium hypochlorite solution for ten minutes to destroy the test bacteria. Citation Memarian M, Fazeli MR, Jamalifar H, Azimnejad A. Disinfection Efficiency of Irreversible Hydrocolloid Impressions Using Different Concentrations of Sodium Hypochlorite: A Pilot Study. J Contemp Dent Pract 2007 May;(8)4:027-034.


2009 ◽  
Vol 72 (5) ◽  
pp. 1020-1024 ◽  
Author(s):  
LUBOV Y. BROVKO ◽  
ANN MEYER ◽  
ARVINDER S. TIWANA ◽  
WEI CHEN ◽  
HAN LIU ◽  
...  

The photodynamic bactericidal effect of the photoactive dyes acriflavine neutral, rose bengal, phloxine B, and malachite green (oxalate salt) at concentrations of 5 to 5,000 μg/ml against two gram-negative strains (Escherichia coli LJH 128 and Salmonella Typhimurium C1058), two gram-positive strains (Bacillus sp. C578 and Listeria monocytogenes LJH 375), and yeast (Saccharomyces cerevisiae C1172) was investigated. Incubation of the investigated bacteria with acriflavine neutral under illumination resulted in a significant reduction in cell numbers compared with dark incubation. Rose bengal caused a significant killing effect for bacteria incubated both in the dark and under illumination. Malachite green was active against gram-positive bacteria under illumination and did not affect gram-negative bacteria or yeasts. Incubation with phloxine B resulted in a significant decline in cell numbers for gram-positive bacteria, both in the dark and under illumination; gram-negative bacteria and yeasts were unaffected. Conjugation of rose bengal and phloxine B with poly(vinyl amine) resulted in an enhanced bactericidal effect during both dark and light incubation. This was explained by electrostatic interaction of the polymer with the cell surface, which resulted in closer contact of the photoactive dye and cell. No killing effect was observed for yeasts incubated with dye conjugates. Filter paper treated with dye–poly(vinyl amine) conjugates showed high photodynamic bactericidal activity against the bacterial strains, but not against the yeasts. The extent of bacterial killing depended on the nature and concentration of the dye conjugate and the type of microorganism. The presented data suggest that a photodynamic approach for constructing “self-decontaminating” materials has potential.


2019 ◽  
Vol 6 (1) ◽  
pp. 63-72
Author(s):  
Abdelali Merah ◽  
Abdenabi Abidi ◽  
Hana Merad ◽  
Noureddine Gherraf ◽  
Mostepha Iezid ◽  
...  

Abstract Interest in nanomaterials, especially metal oxides, in the fight against resistant and constantly changing bacterial strains, is more and more expressed. Their very high reactivity, resulting from their large surface area, promoted them to the rank of potential successors of antibiotics. Our work consisted of the synthesis of zinc oxide (ZnO) and copper oxide (CuO) in the nanoparticle state and the study of their bactericidal effect on various Gram-negative and Gram-positive bacterial strains. The nanoparticles of metal oxides have been synthesized by sol-gel method. Qualitative analysis and characterization by UV / Visible and infrared spectrophotometry and X-ray diffraction confirmed that the synthetic products are crystalline. The application of the Scherrer equation allows to determine the size of the two metal oxides, namely: 76.94 nm for ZnO and 24.86 nm for CuO. The bactericidal effect of ZnO and CuO nanoparticles was tested on Gram-positive bacteria (Staphylococcus aureus, Staphylococcus hominis, Staphylococcus haemolyticus, Enterococcus facials) and Gram-negative bacteria (Escherichia coli, Schigella, Klepsiella pneumoniae and Pseudomonas aeruginosa). The results indicate that the tested metal oxides nanoparticles have an effect that varies depending on bacterial species. Indeed, Gram-positive bacteria show greater sensitivity to ZnO nanoparticles whereas Gram-negative bacteria are more sensitive to CuO nanoparticles.


2011 ◽  
Vol 55 (5) ◽  
pp. 2206-2211 ◽  
Author(s):  
P. Veiga-Crespo ◽  
E. Fusté ◽  
T. Vinuesa ◽  
M. Viñas ◽  
T. G. Villa

ABSTRACTAntibiotic-resistant bacteria are becoming one of the most important problems in health care because of the number of resistant strains and the paucity of new effective antimicrobials. Since antibiotic-resistant bacteria will continue to increase, it is necessary to look for new alternative strategies to fight against them. It is generally accepted that Gram-negative bacteria are intrinsically less susceptible than Gram-positive bacteria to antimicrobials. The main reason is that Gram-negative bacteria are surrounded by a permeability barrier known as the outer membrane (OM). Hydrophilic solutes most often cross the OM through water-filled channels formed by a particular family of proteins known as porins. This work explores the possibility of using exogenous porins to lower the required amounts of antibiotics (ampicillin, ciprofloxacin, cefotaxime, clindamycin, erythromycin, and tetracycline). Porins had a bactericidal effect onEscherichia colicultures, mainly in the logarithmic phase of growth, when combined with low antibiotic concentrations. The use of different antibiotic-porin mixtures showed a bactericidal effect greater than those of antibiotics and porins when used separately. It was possible to observe different behaviors according to the antibiotic type used.


1999 ◽  
Vol 67 (9) ◽  
pp. 4668-4672 ◽  
Author(s):  
Domenico Caccavo ◽  
Antonella Afeltra ◽  
Salvatore Pece ◽  
Giuseppe Giuliani ◽  
Marina Freudenberg ◽  
...  

ABSTRACT Lactoferrin (LF) is a glycoprotein that exerts both bacteriostatic and bactericidal activities. The interaction of LF with lipopolysaccharide (LPS) of gram-negative bacteria seems to play a crucial role in the bactericidal effect. In this study, we evaluated, by means of an enzyme-linked immunosorbent assay, the binding of biotinylated LF to the S (smooth) and R (rough) (Ra, Rb, Rc, Rd1, Rd2, and Re) forms of LPS and different lipid A preparations. In addition, the effects of two monoclonal antibodies (AGM 10.14, an immunoglobulin G1 [IgG1] antibody, and AGM 2.29, an IgG2b antibody), directed against spatially distant epitopes of human LF, on the LF-lipid A or LF-LPS interaction were evaluated. The results showed that biotinylated LF specifically binds to solid-phase lipid A, as this interaction was prevented in a dose-dependent fashion by either soluble uncoupled LF or lipid A. The binding of LF to S-form LPS was markedly weaker than that to lipid A. Moreover, the rate of LF binding to R-form LPS was inversely related to core length. The results suggest that the polysaccharide O chain as well as oligosaccharide core structures may interfere with the LF-lipid A interaction. In addition, we found that soluble lipid A also inhibited LF binding to immobilized LPS, demonstrating that, in the whole LPS structure, the lipid A region contains the major determinant recognized by LF. AGM 10.14 inhibited LF binding to lipid A and LPS in a dose-dependent fashion, indicating that this monoclonal antibody recognizes an epitope involved in the binding of LF to lipid A or some epitope in its close vicinity. In contrast, AGM 2.29, even in a molar excess, did not prevent the binding of LF to lipid A or LPS. Therefore, AGM 10.14 may represent a useful tool for neutralizing selectively the binding of LF to lipid A. In addition, the use of such a monoclonal antibody could allow better elucidation of the consequences of the LF-lipid A interaction.


Author(s):  
Kristina Bertl ◽  
Chiarra Geissberger ◽  
David Zinndorf ◽  
Pia Edlund Johansson ◽  
Hatem Al-Shammari ◽  
...  

Abstract Objective To assess whether bacterial colonisation in a power-driven water flosser can be prevented. Materials and methods Twenty-four patients undergoing supportive periodontal treatment used 2 power-driven water flossers [Sonicare AirFloss (SAF), AirFloss Ultra (SAFU)] for 12 weeks each as follows: (a) with bottled water (BW); (b) with BW and cleaning the device extra-orally twice per week with chlorhexidine gluconate or (c) essential-oil-based (EO) mouth-rinse; (d) with EO only. Water-jet samples were taken after 6 and 12 weeks with the used nozzle and after exchanging to a brand-new nozzle. After 12 weeks, all devices underwent an intensive cleaning procedure. Samples were analysed by PCR-based method for cariogenic and periodontal pathogens and culture for staphylococci, aerobe gram-negative bacteria, and Candida sp. Results Contamination of SAF/SAFU with Streptococcus mutans was found in > 95% of the samples; periodontal pathogens and aerobe gram-negative bacteria were detected in 19–56% of the samples, while Staphylococcus aureus and Candida sp. were identified only in few samples. Contamination rate was basically unaffected by time-point, device, or way of use. Further, exchanging the nozzle did not prevent transmission of a contaminated water-jet, but the intensive cleaning reduced most of the pathogens significantly, except of S. mutans. Conclusion Neither a specific way of use nor exchanging the nozzle prevented bacterial colonisation and transmission of biofilm components via the water-jet of SAF/SAFU. Clinical relevance Bacterial colonisation in a power-driven water flosser seems impossible to prevent; to restrict the risk of cross-contamination within a household, one device per person should be recommended.


Author(s):  
Akira Matsumoto

Cell walls of the both types of bodies, mature elementary body(EB) and developmental reticulate body(RB) of Chlamydia psittaci appear the triple layered membrane in thin section. However, in the preparations shadowcast or stained negatively EB cell wall shows hexagonally arrayed structure composed of subunits, 180A in diameter on the inside surface, whereas RB cell wall does not have this structure. Chemical analysis demonstrated that EB cell wall contained a similar amino acid composition with the cell walls of gram-negative bacteria, such as E.coli. The bactericidal effect of polymixin group against gram-negative bacilli is understood that the drug affects to the cell wall and destroys its osmotic regulation. Electron microscopy on the effects of the drug against the gram-negative bacteria revealed the formation of numerous number of projections on the cell wall surface and leakage of cell content through the projections. The present report is concerned with further studies on the fine structure of EB cell walls based on the observation on their response to polymixin B sulfate.


Sign in / Sign up

Export Citation Format

Share Document