A Spatial Simulation Experiment to Replicate Fluvial Sediment Fluxes within the Magdalena River Basin, Colombia

2010 ◽  
Vol 118 (4) ◽  
pp. 363-379 ◽  
Author(s):  
A. J. Kettner ◽  
J. D. Restrepo ◽  
J. P. M. Syvitski
Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 208 ◽  
Author(s):  
Nazzareno Diodato ◽  
Naziano Filizola ◽  
Pasquale Borrelli ◽  
Panos Panagos ◽  
Gianni Bellocchi

The occurrence of hydrological extremes in the Amazon region and the associated sediment loss during rainfall events are key features in the global climate system. Climate extremes alter the sediment and carbon balance but the ecological consequences of such changes are poorly understood in this region. With the aim of examining the interactions between precipitation and landscape-scale controls of sediment export from the Amazon basin, we developed a parsimonious hydro-climatological model on a multi-year series (1997–2014) of sediment discharge data taken at the outlet of Óbidos (Brazil) watershed (the narrowest and swiftest part of the Amazon River). The calibrated model (correlation coefficient equal to 0.84) captured the sediment load variability of an independent dataset from a different watershed (the Magdalena River basin), and performed better than three alternative approaches. Our model captured the interdecadal variability and the long-term patterns of sediment export. In our reconstruction of yearly sediment discharge over 1859–2014, we observed that landscape erosion changes are mostly induced by single storm events, and result from coupled effects of droughts and storms over long time scales. By quantifying temporal variations in the sediment produced by weathering, this analysis enables a new understanding of the linkage between climate forcing and river response, which drives sediment dynamics in the Amazon basin.


2021 ◽  
Author(s):  
Diver E. Marín ◽  
Juan F. Salazar ◽  
José A. Posada-Marín

<p>Some of the main problems in hydrological sciences are related to how and why river flows change as a result of environmental change, and what are the corresponding implications for society. This has been described as the Panta Rhei context, which refers to the challenge of understanding and quantifying hydrological dynamics in a changing environment, i.e. under the influence of non-stationary effects. The river flow regime in a basin is the result of a complex aggregation process that has been studied by the scaling theory, which allows river basins to be classified as regulated or unregulated and to identify a critical threshold between these states. Regulation is defined here as the basin’s capacity to either dampen high flows or to enhance low flows. This capacity depends on how basins store and release water through time, which in turn depends on many processes that are highly dynamic and sensitive to environmental change. Here we focus on the Magdalena river basin in northwestern South America, which is the main basin for water and energy security in Colombia, and at the same time, it has been identified as one of the most vulnerable regions to be affected by climate change. Building upon some of our previous studies, here we use data analysis to study the evolution of regulation in the Magdalena basin for 1992-2015 based on the scaling theory for extreme flows. In contrast to most previous studies, here we focus on the scaling properties of events rather than on long term averages. We discuss possible relations between changes in the scaling properties and environmental factors such as climate variability, climate change, and land use/land cover change, as well as the potential implications for water security in the country. Our results show that, during the last few decades, the Magdalena river basin has maintained its capacity to regulate low flows (i.e. amplification) whereas it has been losing its capacity to regulate high flows (i.e. dampening), which could be associated with the occurrence of the extremes phases of  El Niño Southern Oscillation (ENSO) and anthropogenic effects, mainly deforestation. These results provide foundations for using the scaling laws as empirical tools for understanding temporal changes of hydrological regulation and simultaneously generate useful scientific evidence that allows stakeholders to take decisions related to water management in the Magdalena river basin in the context of environmental change.</p>


2010 ◽  
Vol 105 (2) ◽  
pp. 216-219 ◽  
Author(s):  
María Cristina Carrasquilla ◽  
Felipe Guhl ◽  
Yaneth Zipa ◽  
Cristina Ferro ◽  
Raúl Hernando Pardo ◽  
...  

2011 ◽  
Vol 9 (4) ◽  
pp. 709-730 ◽  
Author(s):  
Alejandro Londoño-Burbano ◽  
César Román-Valencia ◽  
Donald C. Taphorn

We review species of Parodon Valenciennes, 1850 from the Magdalena, Cauca, Orinoco, Amazonas, Atrato and Caribbean-Guajira River basins of Colombia using meristic and morphological characters. We recognize eight valid species, five previously described: P. apolinari Myers, from the Orinoco River basin; P. buckleyi Boulenger and P. pongoensis (Allen) from the upper Amazon; P. caliensis Boulenger, from the upper Cauca River drainage; and P. suborbitalis Valenciennes, from Lake Maracaibo basin. Three new species are described: P. alfonsoi, from the lower Magdalena River drainage; P. magdalenensis, from the middle Magdalena and upper Cauca River drainages; and P. atratoensis, from the Atrato River basin. We redescribe Parodon suborbitalis using type specimens and topotypes, and designate lectotypes. A taxonomic key is included for identification of the species, as well as geographic distribution maps.


Science ◽  
2021 ◽  
Vol 374 (6567) ◽  
pp. 599-603
Author(s):  
Dongfeng Li ◽  
Xixi Lu ◽  
Irina Overeem ◽  
Desmond E. Walling ◽  
Jaia Syvitski ◽  
...  

2021 ◽  
Author(s):  
Dongfeng Li ◽  
Xixi Lu ◽  
Ting Zhang

<p>Sediment flux in cold environments is a crucial proxy to link glacial, periglacial, and fluvial systems and highly relevant to hydropower operation, water quality, and the riverine carbon cycle. However, the long-term impacts of climate change and multiple human activities on sediment flux changes in cold environments remain insufficiently investigated due to the lack of monitoring and the complexity of the sediment cascade. Here we examine the multi-decadal changes in the in-situ observed fluvial sediment fluxes from two types of basins, namely, pristine basins and disturbed basins, in the Tibetan Plateau and its margins. The results show that the fluvial sediment fluxes in the pristine Tuotuohe headwater have substantially increased over the past three decades (i.e., a net increase of 135% from 1985–1997 to 1998–2017) due to the warming and wetting climate. We also quantify the relative impacts of air temperature and precipitation on the increases in the sediment fluxes with a novel attribution approach and finds that climate warming and intensified glacier-snow-permafrost melting is the primary cause of the increased sediment fluxes in the pristine cold environment (Tuotuohe headwater), with precipitation increase and its associated pluvial processes being the secondary driver. By contrast, the sediment fluxes in the downstream disturbed Jinsha River (southeastern margin of the Tibetan Plateau) exhibit a net increase of 42% from 1966-1984 to 1985-2010 mainly due to human activities such as deforestation and mineral extraction (contribution of 82%) and secondly because of climate change (contribution of 18%). Then the sediment fluxes dropped by 76% during the period of 2011-2015 because of the operations of six cascade reservoirs since 2010. In an expected warming and wetting climate for the region, we predict that the sediment fluxes in the pristine headwaters of the Tibetan Plateau will continue to increase throughout the 21st century, but the rising sediment fluxes from the Tibetan Plateau would be mostly trapped in its marginal reservoirs.</p><p>Overall, this work has provided the sedimentary evidence of modern climate change through robust observational sediment flux data over multiple decades. It demonstrates that sediment fluxes in pristine cold environments are more sensitive to air temperature and thermal-driven geomorphic processes than to precipitation and pluvial-driven processes. It also provides a guide to assess the relative impacts of human activities and climate change on fluvial sediment flux changes and has significant implications for water resources stakeholders to better design and manage the hydropower dams in a changing climate. Such findings may also have implications for other cold environments such as the Arctic, Antarctic, and other high mountainous basins.</p><p>Furthermore, this research is under the project of "Water and Sediment Fluxes Response to Climate Change in the Headwater Rivers of Asian Highlands" (supported by the IPCC and the Cuomo Foundation) and the project of "Sediment Load Responses to Climate Change in High Mountain Asia" (supported by the Ministry of Education of Singapore). Part of the results are also published in Li et al., 2018 Geomorphology, Li et al., 2020 Geophysical Research Letters, and Li et al., 2021 Water Resources Research.</p>


2020 ◽  
Author(s):  
Juan F. Salazar ◽  
Silvana Bolaños ◽  
Estiven Rodríguez ◽  
Teresita Betancur ◽  
Juan Camilo Villegas ◽  
...  

<p>Many natural and social phenomena depend on the regulation of river flow regimes. Regulation is defined here as the capacity of river basins to attenuate extreme flows, which includes the capacity to enhance low flows during dry periods of time. This capacity depends on how basins store and release water through time, which in turn depends on manifold processes that can be highly dynamic and sensitive to global change. Here we focus on the Magdalena river basin in northwestern South America, which is critical for water and energy security in Colombia, and has experienced water scarcity problems in the past, including the collapse of the national hydropower system due to El Niño 1991-1992. In this basin we study the evolution of regulation and related processes from two perspectives. First, we present a widely applicable conceptual framework that is based on the scaling theory and allows assessing the evolution of regulation in river basins, and use this framework to show how the Magdalena basin’s regulation capacity has been changing in recent decades. Second, we use data from the GRACE mission to investigate variations in water storage in the basin, and identify recent decreasing trends in both terrestrial water storage and groundwater storage. Further we show that temporal and spatial patterns of water storage depletion are likely related to the occurrence of ENSO extremes and pronounced differences between the lower and higher parts of the basin, including the presence of major wetland systems in the low lands and Andean mountains in the high lands. Our results provide insights on how to assess and monitor regulation in river basins, as well as on how this regulation relates to the dynamics of low flows and water storage, and therefore to potential water scarcity problems.</p>


Sign in / Sign up

Export Citation Format

Share Document