scholarly journals HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544

2009 ◽  
Vol 707 (2) ◽  
pp. L163-L168 ◽  
Author(s):  
Graham P. Smith ◽  
Harald Ebeling ◽  
Marceau Limousin ◽  
Jean-Paul Kneib ◽  
A. M. Swinbank ◽  
...  
2021 ◽  
Vol 923 (1) ◽  
pp. 101
Author(s):  
Jinhyub Kim ◽  
M. James Jee ◽  
John P. Hughes ◽  
Mijin Yoon ◽  
Kim HyeongHan ◽  
...  

Abstract We present an improved weak-lensing (WL) study of the high-z (z = 0.87) merging galaxy cluster ACT-CL J0102–4915 (“El Gordo”) based on new wide-field Hubble Space Telescope imaging data. The new imaging data cover the ∼3.5 × ∼3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the ∼2σ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro–Frenk–White (NFW) halos without employing mass–concentration relations. The masses are M 200 c NW = 9.9 − 2.2 + 2.1 × 1014 and M 200 c SE = 6.5 − 1.4 + 1.9 × 1014 M ⊙ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong-lensing results. This discrepancy is attributed to the use of extrapolation in strong-lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be M 200 c = 2.13 − 0.23 + 0.25 × 1015 M ⊙, which is ∼23% lower than our previous WL result [M 200c = (2.76 ± 0.51) × 1015 M ⊙]. Our updated mass is a more direct measurement, since we are not extrapolating to R 200c as in all previous studies. The new mass is compatible with the current ΛCDM cosmology.


2015 ◽  
Vol 11 (S319) ◽  
pp. 127-127
Author(s):  
Inger Jørgensen ◽  
Scott Fisher ◽  
Charity Woodrum ◽  
Teiler Kwan ◽  
Jacob Bieker

AbstractWe present results on the stellar populations of bulge-dominated field galaxies at redshifts up to ≈1.0. The sample consists of non-cluster galaxies observed as part of the spectroscopic observations for the Gemini/HST Galaxy Cluster Project (GCP). Our preliminary results show that the bulge-dominated field galaxies contain younger stellar populations than cluster galaxies at similar redshifts. Future work will include photometry from Hubble Space Telescope and will be aimed at establishing the evolution of the sizes and the mass-to-light ratios for the field galaxies.


1999 ◽  
Vol 118 (4) ◽  
pp. 1671-1683 ◽  
Author(s):  
R. Buonanno ◽  
C. E. Corsi ◽  
M. Castellani ◽  
G. Marconi ◽  
F. Fusi Pecci ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. L81-L85 ◽  
Author(s):  
E Vanzella ◽  
M Meneghetti ◽  
G B Caminha ◽  
M Castellano ◽  
F Calura ◽  
...  

ABSTRACT We discovered a strongly lensed (μ ≳ 40) Ly α emission at z = 6.629 (S/N ≃ 18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF) galaxy cluster MACS J0416. Dedicated lensing simulations imply that the Ly α emitting region necessarily crosses the caustic. The arc-like shape of the Ly α extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Ly α luminosity L ≲ 2.8 × 1040 erg s−1 arising from a confined region (≲150 pc effective radius). A spatially unresolved Hubble Space Telescope(HST) counterpart is barely detected at S/N ≃ 2 after stacking the near-infrared bands, corresponding to an observed (intrinsic) magnitude m1500 ≳ 30.8 (≳35.0). The inferred rest-frame Ly α equivalent width is EW0 > 1120 Å if the IGM transmission is TIGM < 0.5. The low luminosities and the extremely large Ly α EW0 match the case of a Population III (Pop III) star complex made of several dozens stars (∼104 M⊙) that irradiate an H ii region crossing the caustic. While the Ly α and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Ly α emissions could be affected by differential magnification, possibly biasing the EW0 estimate. The aforementioned tentative HST detection tends to favour a large EW0, making such a faint Pop III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes.


2020 ◽  
Vol 495 (3) ◽  
pp. 3192-3208
Author(s):  
Liang Dai ◽  
Alexander A Kaurov ◽  
Keren Sharon ◽  
Michael Florian ◽  
Jordi Miralda-Escudé ◽  
...  

ABSTRACT We study the highly magnified arc SGAS J122651.3+215220 caused by a star-forming galaxy at zs = 2.93 crossing the lensing caustic cast by the galaxy cluster SDSS J1226+2152 (zl = 0.43), using Hubble Space Telescope observations. We report in the arc several asymmetric surface brightness features whose angular separations are a fraction of an arcsecond from the lensing critical curve and appear to be highly but unequally magnified image pairs of underlying compact sources, with one brightest pair having clear asymmetry consistently across four filters. One explanation of unequal magnification is microlensing by intracluster stars, which induces independent flux variations in the images of individual or groups of source stars in the lensed galaxy. For a second possibility, intracluster dark matter subhaloes invisible to telescopes effectively perturb lensing magnifications near the critical curve and give rise to persistently unequal image pairs. Our modelling suggests, at least for the most prominent identified image pair, that the microlensing hypothesis is in tension with the absence of notable asymmetry variation over a six-year baseline, while subhaloes of ∼106–$10^8\, \mathrm{ M}_\odot$ anticipated from structure formation with cold dark matter typically produce stationary and sizable asymmetries. We judge that observations at additional times and more precise lens models are necessary to stringently constrain temporal variability and robustly distinguish between the two explanations. The arc under this study is a scheduled target of a Director’s Discretionary Early Release Science program of the James Webb Space Telescope, which will provide deep images and a high-resolution view with integral field spectroscopy.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 787-790
Author(s):  
S. H. Suyu ◽  
C. Grillo ◽  
P. Rosati

AbstractThe Frontier Fields cluster MACS J0416.1-2403 with its extensive imaging and spectroscopic data sets provides a great opportunity to study the mass distribution of the galaxy cluster and members, the high-redshift Universe and cosmology. By taking advantage of the observations in the 16 Hubble Space Telescope imaging bands of the Cluster Lensing And Supernova survey with Hubble (CLASH) survey and our large spectroscopic follow-up program with the VIsible Multi-Object Spectrograph (VIMOS) on the Very Large Telescope (VLT), we have been able to identify and obtain the spectroscopic redshifts of 10 important strong lensing systems in this cluster. Furthermore, we have selected and modeled the mass distribution of ~200 candidate cluster members residing in the inner regions of the cluster. We present the results on the model-predicted central mass profile and subhalo population, which are detailed in Grillo et al. (2015). Work is underway to quantify the effects of line-of-sight structures. These are essential elements to make progress in our understanding of the dark matter distribution in massive galaxy clusters and of the distant Universe within the current Frontier Fields initiative and before the advent of the James Webb Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document