scholarly journals EVOLUTION OF A DWARF SATELLITE GALAXY EMBEDDED IN A SCALAR FIELD DARK MATTER HALO

2015 ◽  
Vol 810 (2) ◽  
pp. 99 ◽  
Author(s):  
Victor H. Robles ◽  
V. Lora ◽  
T. Matos ◽  
F. J. Sánchez-Salcedo
2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Maribel Hernández ◽  
Ana A. Avilez ◽  
Tonatiuh Matos

Abstract We study the possibility that large-scale magnetic fields observed in galaxies could be produced by a dark matter halo made of charged ultra-light bosons, that arise as excitations of a complex scalar field described by the Klein–Gordon equation with local U(1) symmetry which introduces electromagnetic fields that minimally couple to the complex scalar current and act as dark virtual photons. These virtual photons have an unknown coupling constant with real virtual photons. We constrain the final interaction using the observed magnetic fields in galaxies. We use classical solutions of the Klein–Gordon–Maxwell system to describe the density profile of dark matter and magnetic fields in galaxies. We consider two cases assuming spherical and dipolar spatial symmetries. For the LSB spherical galaxy F563-V2, we test the sensitivity of the predicted rotation curves in the charged Scalar Field Dark Matter (cSFDM) model to variations of the electromagnetic coupling and using the Fisher matrix error estimator, we set a constraint over that coupling by requiring that theoretical rotation curves lay inside the $$1\sigma $$1σ confidence region of observational data. We find that cSFDM haloes generate magnetic fields of the order of $$\mu G$$μG and reproduce the observed rotation curves of F563-V2 if the ultra-light boson has a charge $$\sim <10^{-13}e$$∼<10-13e for the monopole-like density profile and $$\sim <10^{-14}e$$∼<10-14e for the dipole-like one.


2020 ◽  
Vol 35 (19) ◽  
pp. 2050155
Author(s):  
Jae-Weon Lee ◽  
Hyeong-Chan Kim ◽  
Jungjai Lee

We show a relation between the mass of supermassive black holes in galaxies and the velocity dispersions of their bulges in the scalar field or the Bose–Einstein condensate dark matter model. The gravity of the central black holes changes boundary conditions of the scalar field at the galactic centers. Owing to the wave nature of the dark matter, this significantly changes the galactic dark matter halo profiles even though the black holes are much lighter than the bulges. As a result the heavier the black holes are, the more compact the bulges are, and hence the larger the velocity dispersions are. This tendency is verified by a numerical study showing the M-sigma relation reproduced with the dark matter particle mass [Formula: see text] eV.


2016 ◽  
Vol 11 (S321) ◽  
pp. 72-74
Author(s):  
Santi Roca-Fàbrega ◽  
Pedro Colin ◽  
Octavio Valenzuela ◽  
Francesca Figueras ◽  
Yair Krongold

AbstractWe present a new set of cosmological Milky Way size galaxy simulations using ART. In our simulations the main system has been evolved inside a 28 Mpc cosmological box with a spatial resolution of 109 pc. At z=0 our systems have an Mvir = 6 − 8 × 1011 M⊙. In several of out models we have observed how a well defined disk is formed inside the dark matter halo and the overall amount of gas and stars is comparable with MW observations. Several non-axisymmetric structures arise out of the disk: spirals, bars and also a warp. We have also observed that a huge reservoir of hot gas is present at large distances from the disk, embedded in the dark matter halo region, accounting for only a fraction of the ”missing baryons”. Gas column density, emission (EM) and dispersion (DM) measure have been computed from inside the simulated disk at a position of 8 kpc from the center and in several directions. Our preliminary results reveal that the distribution of hot gas is non-isotropic according with observations (Gupta et al. 2012, Gupta et al. 2014). Also its metallic content presents a clear bimodality what is a consequence of a recent accretion of a satellite galaxy among others. After a careful analysis we confirm that due to the anisotropy in the gas distribution a new observational parameter needs to be defined to recover the real distribution of hot gas in the galactic halo (Roca-Fàbrega et al. 2016).


2019 ◽  
Vol 14 (S353) ◽  
pp. 123-127 ◽  
Author(s):  
Gurtina Besla ◽  
Nicolás Garavito-Camargo

AbstractRecent advancements in astrometry and in cosmological models of dark matter halo growth have significantly changed our understanding of the dynamics of the Local Group. The most dramatic changes owe to a new picture of the structure and dynamics of the Milky Way’s most massive satellite galaxy, the Large Magellanic Cloud (LMC), which is most likely on its first passage about the Milky Way and ten times larger in mass than previously assumed. The LMC’s orbit through the Milky Way’s dark matter and stellar halo will leave characteristic signatures in both density and kinematics. Furthermore, the gravitational perturbations produced by both direct tidal forcing from the LMC and the response of the halo to its passage will together cause significant perturbations to the orbits of tracers of the Milky Way’s dark matter distribution. We advocate for the use of basis field expansion methods to fully capture and quantify these effects.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document