Epitaxial growth of Ag films on InP (001) by atomic beam epitaxy in ultra-high vacuum

1977 ◽  
Vol 10 (10) ◽  
pp. L135-L138 ◽  
Author(s):  
R F C Farrow
2004 ◽  
Vol 16 (33) ◽  
pp. S3451-S3458 ◽  
Author(s):  
R Macovez ◽  
C Cepek ◽  
M Sancrotti ◽  
A Goldoni ◽  
L Petaccia ◽  
...  

1986 ◽  
Vol 74 ◽  
Author(s):  
H. C. Cheng ◽  
I. C. Wu ◽  
L. J. Chen

AbstractThe epitaxial growth of near noble silicides, including CoSi2, NiSi2, FeSi2, Pd2 Si, and PtSi on (111)Si, by rapid thermal annealing was studied by transmission electron microscopy. Single-crystalline CoSi2 was formed on (111)Si in the solid phase epitaxy regime by a non-ultra-high vacuum method. The effect on gas ambient was found to be of critical importance on the growth of single-crystal CoSi2 on (111)Si. The best NiSi2, FeSi2, Pd2 Si, and PtSi epitaxy grown on (111)Si by rapid thermal annealing were found to be of comparable quality to those grown by conventional furnace annealing.


1968 ◽  
Vol 1 (1) ◽  
pp. 11-14 ◽  
Author(s):  
B A Unvala ◽  
J M Woodcock ◽  
D B Holt

2001 ◽  
Vol 90 (1) ◽  
pp. 512-514 ◽  
Author(s):  
S. Guha ◽  
E. Cartier ◽  
N. A. Bojarczuk ◽  
J. Bruley ◽  
L. Gignac ◽  
...  

Shinku ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 317-320
Author(s):  
Hyun-Chul KO ◽  
Doo-Cheol PARK ◽  
Yoichi KAWAKAMI ◽  
Shizuo FUJITA ◽  
Shigeo FUJITA

1990 ◽  
Vol 202 ◽  
Author(s):  
M.A. Lawn ◽  
R.G. Elliman ◽  
M.C. Ridgway ◽  
R. Leckey ◽  
J.D. Riley

ABSTRACTA study of the growth of thin Ir silicide films on (111)Si substrates has been undertaken. Thin (2.0nm) ir films deposited onto Si substrates under ultra-high vacuum conditions have been observed to display remarkable film continuity and fine grain structure (lnm). In situ annealing at 1000°C resulted in the formation of large regions (>10µm) of epitaxial IrSi3 islands (∼1µm) with identical epitaxial orientations. By means of annealing an as-deposited (2.0nm) Ir film stepwise to 1000°C within a transmission electron microscope the evolution of Ir silicide phases and morphologies were observed. The epitaxial growth of the semiconducting IrSi1.75 phase is reported along with the formation of Ir silicide islands at temperatures between 700°C and 800°C.


Sign in / Sign up

Export Citation Format

Share Document