High-quality aluminum oxide gate dielectrics by ultra-high-vacuum reactive atomic-beam deposition

2001 ◽  
Vol 90 (1) ◽  
pp. 512-514 ◽  
Author(s):  
S. Guha ◽  
E. Cartier ◽  
N. A. Bojarczuk ◽  
J. Bruley ◽  
L. Gignac ◽  
...  
2000 ◽  
Vol 77 (17) ◽  
pp. 2710-2712 ◽  
Author(s):  
S. Guha ◽  
E. Cartier ◽  
M. A. Gribelyuk ◽  
N. A. Bojarczuk ◽  
M. C. Copel

1999 ◽  
Vol 16 (10) ◽  
pp. 750-752 ◽  
Author(s):  
Zhen Qi ◽  
Jing-yun Huang ◽  
Zhi-zhen Ye ◽  
Huan-ming Lu ◽  
Wei-hua Chen ◽  
...  

1987 ◽  
Vol 95 ◽  
Author(s):  
Shinya Tsuda ◽  
Hisao Haku ◽  
Hisaki Tarui ◽  
Takao Matsuyama ◽  
Katsunobu Sayama ◽  
...  

AbstractIn order to improve the conversion efficiency of a-Si solar cells, high-quality a-Si based alloys of both narrow handgap and wide bandgap were studied.Concerning the narrow bandgap material, we found a particular dependence of film qualities on substrate temperature. In addition, high-quality a-SiGe:H films were obtained by using a super chamber (separated ultra-high vacuum reaction chamber).As for the high-quality wide bandgap material, a-Si/a-SiC superlattice structure films fabricated by a photo-CVD method were studied for the first time. From the analysis of their properties, we found that the superlattice structure p-layer was an active layer for photovoltaic effect. A conversion efficiency of 11.2% has been obtained for a pin a-Si solar cell whose player was of the superlattice structure.


1999 ◽  
Vol 557 ◽  
Author(s):  
M. Scholz ◽  
D. Peros ◽  
M. Böhm

AbstractThis work presents first results of potential manufacturing processes for integrated series connected hydrogenated amorphous silicon (a-Si:H) thin film solar modules and/or pindiode/TFT based macroelectronic circuits on flexible tapes. A RTR (Reel-To-Reel) deposition system on laboratory scale has been built, The system consists of seven metal sealed LIHV stinless steel chambers to obtain ultra high vacuum as a basis for high quality a-Si:H layers, in order to support continuous movement of the tape in the RTR process the chambers cannot be isolated from each other. The necessary pressure difference between the sputtering chambers and the PECVD (Plasma Enhanced Chemical Vapor Deposition) chambers is provided by pressure stages. They are optimized for high molecular flow resistance without any influence on the moving substrate tape. The back metal contacts and the semitransparent TCO (Transparent Conductive Oxide) contacts are deposited by rf magnetron sputtering, the a-Si:H film system is deposited by PECVD. Parallel to the film deposition a Nd:YAG laser patterning system is coupled into one chamber. This allows for instance a total manufacturing of integrated series connected solar modules in one system without breaking the vacuum. Our present investigations focus on the deposition of doped and intrinsic high quality a-Si:H based layers in neighboring chambers. The quality of semiconducting films deposited in adjacent chambers is studied with regard to potential contamination effects.


2021 ◽  
Author(s):  
Andreas Walz ◽  
Karolina Stoiber ◽  
Annette Huettig ◽  
Hartmut Schlichting ◽  
Johannes V Barth

The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultra-high vacuum (UHV) is presented, along with encouraging performance data obtained on four model species which are thermolabile or not sublimable. The test panel comprises two small organic compounds, a protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMS) and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated Electrospray Controlled Ion Beam Deposition (ES-CIBD). Full control is achieved by i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMS allowing for investigation, purification and deposition of a virtually unlimited m/z range, ii) the adjustable landing energy of ions down to ~2 eV/z enabling integrity-preserving soft-landing, iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and iv) direct coverage control via the deposited charge. The maximum resolution of R=650 and overall efficiency up to T_total=4.4% calculated from solution to UHV deposition are remarkable as well, while the latter is mainly limited by the not yet optimized ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigation of the deponents demonstrating a selective, structure-preserving process and atomically clean layers.


1998 ◽  
Vol 9 (1-4) ◽  
pp. 437-444 ◽  
Author(s):  
R. Tubino ◽  
A. Borghesi ◽  
L. Dalla Bella ◽  
S. Destri ◽  
W. Porzio ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 482-494
Author(s):  
Jignesh Vanjaria ◽  
Venkat Hariharan ◽  
Arul Chakkaravarthi Arjunan ◽  
Yanze Wu ◽  
Gary S. Tompa ◽  
...  

Heteroepitaxial growth of Ge films on Si is necessary for the progress of integrated Si photonics technology. In this work, an in-house assembled plasma enhanced chemical vapor deposition reactor was used to grow high quality epitaxial Ge films on Si (100) substrates. Low economic and thermal budget were accomplished by the avoidance of ultra-high vacuum conditions or high temperature substrate pre-deposition bake for the process. Films were deposited with and without plasma assistance using germane (GeH4) precursor in a single step at process temperatures of 350–385 °C and chamber pressures of 1–10 Torr at various precursor flow rates. Film growth was realized at high ambient chamber pressures (>10−6 Torr) by utilizing a rigorous ex situ substrate cleaning process, closely controlling substrate loading times, chamber pumping and the dead-time prior to the initiation of film growth. Plasma allowed for higher film deposition rates at lower processing temperatures. An epitaxial growth was confirmed by X-Ray diffraction studies, while crystalline quality of the films was verified by X-ray rocking curve, Raman spectroscopy, transmission electron microscopy and infra-red spectroscopy.


2000 ◽  
Vol 190 (1) ◽  
pp. 49-59 ◽  
Author(s):  
A. Berthet ◽  
A.L. Thomann ◽  
F.J. Cadete Santos Aires ◽  
M. Brun ◽  
C. Deranlot ◽  
...  

2008 ◽  
Vol 1068 ◽  
Author(s):  
Mustafa Jamil ◽  
Joseph P Donnelly ◽  
Se-Hoon Lee ◽  
Davood Shahrjerdi ◽  
Tarik Akyol ◽  
...  

ABSTRACTWe report the growth and characterization of thin germanium-carbon layers grown directly on Si (111) by ultra high-vacuum chemical vapor deposition. The thickness of the films studied is 8-20 nm. The incorporation of small amount (less than 0.5%) of carbon facilitates 2D growth of high quality Ge crystals grown directly on Si (111) without the need of a buffer layer. The Ge1−xCx layers were grown in ultra high vacuum chemical vapor deposition chamber, at a typical pressure of 50 mTorr and at a growth temperature of 440 °C. CH3GeH3 and GeH4 gases were used as the precursors for the epitaxial growth. The Ge1−xCx films were characterized by atomic force microscopy (AFM), secondary ion mass spectroscopy, x-ray diffraction, cross-sectional transmission electron microscopy and Raman spectroscopy. The AFM rms roughness of Ge1−xCx grown directly on Si (111) is only 0.34 nm, which is by far the lowest rms roughness of Ge films grown directly on Si (111). The dependence of growth rate and rms roughness of the films on temperature, C incorporation and deposition pressure was studied. In Ge, (111) surface orientation has the highest electron mobility; however, compressive strain in Ge degrades electron mobility. The technique of C incorporation leads to a low defect density Ge layer on Si (111), well above the critical thickness. Hence high quality crystalline layer of Ge directly on Si (111) can be achieved without compressive strain. The fabricated MOS capacitors exhibit well-behaved electrical characteristics. Thus demonstrate the feasibility of Ge1−xCx layers on Si (111) for future high-carrier-mobility MOS devices that take advantage of high electron mobility in Ge (111).


Sign in / Sign up

Export Citation Format

Share Document