Epitaxial Growth of Near Noble Silicides on (111)Si by Rapid Thermal Annealing

1986 ◽  
Vol 74 ◽  
Author(s):  
H. C. Cheng ◽  
I. C. Wu ◽  
L. J. Chen

AbstractThe epitaxial growth of near noble silicides, including CoSi2, NiSi2, FeSi2, Pd2 Si, and PtSi on (111)Si, by rapid thermal annealing was studied by transmission electron microscopy. Single-crystalline CoSi2 was formed on (111)Si in the solid phase epitaxy regime by a non-ultra-high vacuum method. The effect on gas ambient was found to be of critical importance on the growth of single-crystal CoSi2 on (111)Si. The best NiSi2, FeSi2, Pd2 Si, and PtSi epitaxy grown on (111)Si by rapid thermal annealing were found to be of comparable quality to those grown by conventional furnace annealing.

1987 ◽  
Vol 102 ◽  
Author(s):  
M. Cerullo ◽  
Julia M. Phillips ◽  
M. Anzlowar ◽  
L. Pfeiffer ◽  
J. L. Batstone ◽  
...  

ABSTRACTA new in-situ rapid thermal annealing (RTA) apparatus which can be used to anneal entire wafers in an ultra high vacuum environment has been designed to be used in conjunction with the epitaxial growth of heterostructures. Drastic improvement in the crystallinity of CaF2/Si(100) can be achieved with RTA, and our results suggest that RTA can be used as an on-line processing technique for novel epitaxial structures.


1996 ◽  
Vol 424 ◽  
Author(s):  
Reece Kingi ◽  
Yaozu Wang ◽  
Stephen J. Fonash ◽  
Osama Awadelkarim ◽  
John Mehlhaff

AbstractRapid thermal annealing and furnace annealing for the solid phase crystallization of amorphous silicon thin films deposited using PECVD from argon diluted silane have been compared. Results reveal that the crystallization time, the growth time, and the transient time are temperature activated, and that the resulting polycrystalline silicon grain size is inversely proportional to the annealing temperature, for both furnace annealing and rapid thermal annealing. In addition, rapid thermal annealing was found to result in a lower transient time, a lower growth time, a lower crystallization time, and smaller grain sizes than furnace annealing, for a given annealing temperature. Interestingly, the transient time, growth time, and crystallization time activation energies are much lower for rapid thermal annealing, compared to furnace annealing.We propose two models to explain the observed differences between rapid thermal annealing and furnace annealing.


1983 ◽  
Vol 23 ◽  
Author(s):  
D.L. Kwong ◽  
R. Kwor ◽  
B.Y. Tsaur ◽  
K. Daneshvar

ABSTRACTThe formation of composite TaSi2/n+ Poly-Si silicide films through the use of rapid thermal annealing (RTA) is investigated by x-ray diffraction, four point probe, scanning Auger microprobes (SAM) with ion sputter etching, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and capacitance-voltage (C-V) measurements. 0.2 μm polysilicon is deposited on oxidized Si wafer by LPCVD and doped with phosphorus. A layer of 2200 A TaSix is then co-sputtered on polysilicon samples from separate targets. These as-deposited films are then annealed by RTA in an argon ambient for 1 sec. and 10 sec. at various temperatures. X-ray diffraction and SAM results show the rapid formation of a uniform stoichiometric tantalum disilicide via Si migration from polysilicon. TEM micrographs show simlilar results for samples annealed at 1000°C in furnace for 30 min. or by RTA for 1 sec., exhibiting average grain size greater than 1000 A. Sheet resistance of samples annealed by furnace annealing and RTA are comparable. SEM micrographs indicate that the surface morphology of the RTA-annealed sample is superior to that obtained by furnace annealing. These results show that RTA may offer a practical solution to low-resistivity silicide formation in VLSI circuits.


1996 ◽  
Vol 424 ◽  
Author(s):  
Reece Kingi ◽  
Yaozu Wang ◽  
Stephen Fonash ◽  
Osama Awadelkarim ◽  
Yuan-Mn Li

AbstractThree approaches to modifying the solid phase crystallization kinetics of amorphous silicon thin films are examined with the goal of reducing the thermal budget and improving the poly-Si quality for thin film transistor applications. The three approaches consist of (1) variations in the PECVD a-Si deposition parameters; (2) the application of pre-fumace-anneal surface treatments; and (3) using both rapid thermal annealing and furnace annealing at different temperatures. We also examine the synergism among these approaches.Results reveal that (1) film deposition dilution and dilution/temperature changes do not strongly affect crystallization time, but do affect grain size; (2) pre-anneal surface treatments can dramatically reduce the solid phase crystallization thermal budget for diluted films and act synergistically with deposition dilution or dilution/temperature effects; and (3) rapid thermal annealing leads to different crystallization kinetics from that seen for furnace annealing.


1990 ◽  
Vol 202 ◽  
Author(s):  
M.A. Lawn ◽  
R.G. Elliman ◽  
M.C. Ridgway ◽  
R. Leckey ◽  
J.D. Riley

ABSTRACTA study of the growth of thin Ir silicide films on (111)Si substrates has been undertaken. Thin (2.0nm) ir films deposited onto Si substrates under ultra-high vacuum conditions have been observed to display remarkable film continuity and fine grain structure (lnm). In situ annealing at 1000°C resulted in the formation of large regions (>10µm) of epitaxial IrSi3 islands (∼1µm) with identical epitaxial orientations. By means of annealing an as-deposited (2.0nm) Ir film stepwise to 1000°C within a transmission electron microscope the evolution of Ir silicide phases and morphologies were observed. The epitaxial growth of the semiconducting IrSi1.75 phase is reported along with the formation of Ir silicide islands at temperatures between 700°C and 800°C.


1994 ◽  
Vol 342 ◽  
Author(s):  
J.P. de Souza ◽  
P.F.P. Fichtner ◽  
D.K. Sadana

ABSTRACTCross section TEM and channeling analysis show that the heating rate (HR) of a rapid thermal annealing (RTA) cycle affects the residual defect distribution in Si implanted with As+ to a heavy dose (≈ 1016 cm−2). Two defect bands are observed after solid phase epitaxial growth (SPEG): the first one centered at a depth corresponding to the projected range of the As (band I), and the second one located at depth corresponding to the original amorphous crystalline (a-c) interface (band II). The density of defects in band I is found to increase with the As dose, and with the annealing temperature (550 - 650°C, furnace annealing). However, for RTA (800 - 1000°C) both the density and depth distribution of these defects are dependent on HR. We propose that Si self-interstitials (SiI) are created at the a-c interface when As becomes substitutional during SPEG. The SPEG velocity determines whether the SiI are accommodated in the amorphous Si layer (low velocities) or are captured by the regrowing c-Si (high velocities)


1984 ◽  
Vol 35 ◽  
Author(s):  
A M Hodge ◽  
A G Cullis ◽  
N G Chew

ABSTRACTSolid phase epitaxial regrowth of silicon on sapphire is used to improve the quality of as-received silicon films prior to conventional device processing. It has been shown that this is necessary, especially for layers of 0.3μm and thinner, if the full potential of this particular silicon on insulator technology is to be realised. Si+ ions are implanted at an energy and dose such that all but the surface of the silicon film is rendered amorphous. In this study, the layer is regrown using a rapid thermal annealer operated in the multi-second regime. A second shallower implant followed by rapid thermal annealing produces a further improvement. Characterisation of the material has been principally by cross-sectional transmission electron microscopy. The structures observed after different implant and regrowth treatments are discussed.


1987 ◽  
Vol 107 ◽  
Author(s):  
M. Cerullo ◽  
Julia M. Phillips ◽  
M. Anzlowar ◽  
L. Pfeiffer ◽  
J. L. Batstone ◽  
...  

AbstractA new in-situ rapid thermal annealing (RTA) apparatus which can be used to anneal entire wafers in an ultra high vacuum environment has been designed to be used in conjunction with the epitaxial growth of heterostructures. Drastic improvement in the crystallinity of CaF2/Si(100) can be achieved with RTA, and our results suggest that RTA can be used as an on-line processing technique for novel epitaxial structures.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Sign in / Sign up

Export Citation Format

Share Document