A parametric elastic model for indentation testing of thin films

1993 ◽  
Vol 26 (12) ◽  
pp. 2123-2131 ◽  
Author(s):  
J A Ogilvy
1999 ◽  
Author(s):  
Mauro J. Kobrinsky ◽  
Erik R. Deutsch ◽  
Stephen D. Senturia

Abstract Doubly-supported surface-micromachined beams are increasingly used to study the mechanical properties of thin films. Residual stresses in the beams cause significant vertical deflections, which affect the performance of these devices. We present here both experimental results for doubly-supported polysilicon surface-micromachined beams, and an elastic model of the devices that takes into account the compliance of the supports and the geometrical non-linear dependence of the vertical deflections on the stress in the beam. An elastic one-dimensional model was used for the beams, and the response of the supports to forces and moments was obtained using Finite Element Method simulations. The model explains a previously observed gradual increase of the maximum vertical deflections of the beams with increasing length at a given constant residual stress, and, in agreement with experimental observations, predicts two stable states for compressively stressed beams: one with the beam bent up, the other down.


1998 ◽  
Author(s):  
J.A. Schneider ◽  
K.F. McCarty ◽  
J.R. Heffelfinger ◽  
N.R. Moody

MRS Bulletin ◽  
1992 ◽  
Vol 17 (7) ◽  
pp. 28-33 ◽  
Author(s):  
G.M. Pharr ◽  
W.C. Oliver

One of the simplest ways to measure the mechanical properties of a thin film is to deform it on a very small scale. Because indentation testing with a sharp indenter is one convenient means to accomplish this, nanoindentation, or indentation testing at the nanometer scale, has become one of the most widely used techniques for measuring the mechanical properties of thin films. Other reasons for the popularity of nanoindentation stem from the ease with which a wide variety of mechanical properties can be measured without removing the film from its substrate and the ability to probe a surface at numerous points and spatially map its mechanical properties. The utility of the mapping capability is illustrated in Figure 1, which shows several small indentations made at selected points in a microelectronic device. The hardness and modulus of the device were determined at each point. In addition to microelectronics, nanoindentation has also proved useful in the study of optical coatings, hard coatings, and materials with surfaces modified by ion implantation and laser treatment.


1997 ◽  
Vol 505 ◽  
Author(s):  
J. A. Schneider ◽  
K. F. McCarty ◽  
J. R. Heffelfinger ◽  
N. R. Moody

ABSTRACTA method that is becoming increasingly common for measuring the mechanical behavior of thin films is low-load indentation testing. However, there can be complications in interpreting the results as many factors can affect hardness and moduli measurements such as surface roughness and determination of the indentation contact area. To further our understanding, the mechanical properties of thin (50 nm) films of AlN on sapphire substrates were evaluated using a scanning force microscopy (SFM) based pico-indentation device to allow imaging of the surface and indentations. Our primary emphasis was the types of problems or limitations involved in testing very thin, as deposited films in which properties are desired over indentation depths less than 50 nm.


2002 ◽  
Vol 30 (1) ◽  
pp. 64 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
PL Larsson ◽  
IRM Peterson

Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Sign in / Sign up

Export Citation Format

Share Document