Cryostat for simultaneous investigation of thermal conductivity, electrical resistivity and thermoelectric power in the process of low temperature tensile deformation

1970 ◽  
Vol 3 (8) ◽  
pp. 661-662 ◽  
Author(s):  
P G Vassilev ◽  
J K Georgiev
1966 ◽  
Vol 44 (10) ◽  
pp. 2293-2302 ◽  
Author(s):  
H. L. Malm ◽  
S. B. Woods

Low-temperature measurements of electrical resistivity, thermal conductivity, and thermoelectric power on silver alloys containing 0.005, 0.067, 0.11, and 0.31 at.% of manganese are reported. The same specimens were used for the measurement of all properties over the temperature range from 2 to 25 °K. The well-known minimum and maximum are observed in the electrical resistivity of the three more concentrated alloys and the minimum is visible in the most dilute alloy near the lowest temperatures of measurement. Associated effects are observed in the other properties and their possible relationship to theoretical electron scattering mechanisms, particularly that of Kondo, is discussed.


2018 ◽  
Vol 229 ◽  
pp. 261-264 ◽  
Author(s):  
Xin Tong ◽  
Guoqiang You ◽  
Yuhan Ding ◽  
Hansong Xue ◽  
Yichang Wang ◽  
...  

1975 ◽  
Vol 53 (5) ◽  
pp. 486-497 ◽  
Author(s):  
J. G. Cook ◽  
M. J. Laubitz ◽  
M. P. Van der Meer

Data are presented for the thermal and electrical resistivity and thermoelectric power of two samples of Ca (having residual resistance ratios of 10 and 70) between 30 and 300 K. Large deviations from both Matthiessen's rule and the Wiedemann–Franz relationship are observed. The former are tentatively attributed to the presence of two distinct groups of carriers in Ca, and analyzed using the two band model. The latter deviations are interpreted as the effects of band structure. The thermoelectric power of Ca is large. In many respects the transport properties of Ca appear to be similar to those of the transition metals.


1962 ◽  
Vol 17 (10) ◽  
pp. 886-889 ◽  
Author(s):  
Y. Baer ◽  
G. Busch ◽  
C. Fröhlich ◽  
E. Steigmeier

The thermal conductivity, electrical conductivity. Hall coefficient und thermoelectric power of Ag2Se have been measured between 80 and 600°K. In the low temperature semiconductor phase the thermal conductivity increases with increasing temperature due to the high amount of carrier contribution. The latter has been calculated using the Price formula. Agreement with experiment is satisfactory. The specific heat has been measured between 30 and 200°C. For the latent heat a value of (5.7 ± 0.5) cal/gr was determined in agreement with measurements of Bellati and Lussana 4. In addition to the transition at 133 °C an unknown new transition has been found at about 90 °C.


1993 ◽  
Vol 8 (9) ◽  
pp. 2299-2304 ◽  
Author(s):  
B. Nysten ◽  
J-P. Issi ◽  
H. Shioyama ◽  
M. Crespin ◽  
R. Setton ◽  
...  

The temperature variation of the thermal conductivity, the electrical resistivity, and the thermoelectric power of a graphitized polyimide film have been measured in the temperature range 2 < T < 300 K. The effect of the electrochemical intercalation with FeCl4− ions has also been studied. The thermal conductivity measurements confirm the high degree of graphitization that may be obtained with polyimide films. They show how intercalation increases the structural disorder and how the intercalate substantially contributes to the thermal conductivity at low temperatures. The electrical-resistivity and thermoelectric-power measurements reveal that the density of free carriers is about three times lower in stage-2 FeCl4− solvated intercalation compounds obtained by an electrochemical way than in stage-2 FeCl3 compounds obtained by a classical synthesis method.


2002 ◽  
Vol 17 (5) ◽  
pp. 1092-1095 ◽  
Author(s):  
Gaojie Xu ◽  
Ryoji Funahashi ◽  
Ichiro Matsubara ◽  
Masahiro Shikano ◽  
Yuqin Zhou

Polycrystalline samples of Ca1-xBixMnO3 (0.02 ≤ x ≤ 0.20) were studied by means of x-ray diffraction, electrical resistivity (ρ), thermoelectric power (S), and thermal conductivity (κ) at high temperature. Bi doping leads to the lattice parameters a, b, and c increasing. And the ρ and the absolute value of S decrease rapidly with Bi doping. The largest power factor, S2/ρ, is obtained in the x = 0.04 sample, which is 3.6×10−4 Wm−1 K−2 at 400 K. The figures of merit (Z = S2/ρκ) for this sample and 1.0×10−4 and 0.86 × 10−4 K−1 at 600 and 1000 K, respectively.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Veronique Da Ros ◽  
Juliusz Leszczynski ◽  
Bertrand Lenoir ◽  
Anne Dauscher ◽  
Christophe Candolfi ◽  
...  

AbstractThe preparation of partially filled n-type InxCo4Sb12 skutterudite compounds has been recently reported. The results were particularly promising, the materials exhibiting a ZT value far higher than one at moderated temperature. In this paper, we propose to investigate another way to tune the electrical and thermal properties by substituting Co atoms by Ni atoms in InxCo4Sb12. InxCo4-yNiySb12 polycrystalline samples have been prepared by a conventional metallurgical route. Structural analyses have been carried out by X-ray diffraction. The chemical composition and micro-homogeneity have been checked by electron probe microanalysis. Measurements of the electrical resistivity, thermoelectric power and thermal conductivity have been performed between 300 and 800 K. The influence of the presence of Ni on the thermoelectric properties of InxCo4Sb12 compounds is presented and discussed.


1979 ◽  
Vol 57 (6) ◽  
pp. 871-883 ◽  
Author(s):  
J.G. Cook

The electrical resistivity, thermal conductivity, and thermoelectric power of Rb have been measured between 40 and 300 K. Two of the samples were bare, to avoid thermal contraction difficulties; the softness of these samples necessitated further, calibration, measurements on a third sample in glass, just below the freezing point. The electrical resistivity values agree well with published values of Dugdale and Phillips. The Lorenz function, not previously examined in detail above 25 K, shows strong evidence of electron–electron scattering, of a strength intermediate to that calculated by Kukkonen for Thomas–Fermi screening, and for Geldart–Taylor screening. Such scattering appears to have affected the thermoelectric power as well.


Sign in / Sign up

Export Citation Format

Share Document