Experimental investigation of the multiple scatter peak of gamma rays in portland cement in the energy range 279–1332 keV

2011 ◽  
Vol 84 (6) ◽  
pp. 065804 ◽  
Author(s):  
Tejbir Singh ◽  
Parjit S Singh
1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


1982 ◽  
Vol 69 (3) ◽  
pp. 237-240 ◽  
Author(s):  
P. V. C. Sarma ◽  
D. R. K. Raju ◽  
K. Premchand ◽  
B. Mallikarjuna Rao ◽  
K. Parthasaradhi ◽  
...  

2017 ◽  
Author(s):  
David Sarria ◽  
Francois Lebrun ◽  
Pierre-Louis Blelly ◽  
Remi Chipaux ◽  
Philippe Laurent ◽  
...  

Abstract. With a launch expected in 2018, the TARANIS micro-satellite is dedicated to the study of transient phenomena observed in association with thunderstorms. On-board the spacecraft, XGRE and IDEE are two instruments dedicated to study Terrestrial Gamma-ray Flashes (TGFs) and associated electron beams (TEBs). XGRE can detect electrons (energy range: 1 MeV to 10 MeV) and X/gamma-rays (energy range: 20 keV to 10 MeV), with a very high counting capability (about 10 million counts per second), and the ability to discriminate one type of particle from the other. The IDEE instrument is focused on electrons in the 80 keV to 4 MeV energy range, with the ability to estimate their pitch angles. Monte-Carlo simulations of the TARANIS instruments, using a preliminary model of the spacecraft, allow sensitive area estimates for both instruments. It leads to an averaged effective area of 425 cm2 for XGRE to detect X/gamma rays from TGFs, and the combination of XGRE and IDEE gives an average effective area of 255 cm2 to detect electrons/positrons from TEBs. We then compare these performances to RHESSI, AGILE, and Fermi GBM, using performances extracted from literature for the TGF case, and with the help of Monte-Carlo simulations of their mass models for the TEB case. Combining these data with with the help of the MC-PEPTITA Monte-Carlo simulations of TGF propagation in the atmosphere, we build a self-consistent model of the TGF and TEB detection rates of RHESSI, AGILE, and Fermi. It can then be used to estimate that TARANIS should detect about 225 TGFs/year and 25 TEBs/year.


2019 ◽  
Vol 208 ◽  
pp. 14001
Author(s):  
H. León Vargas

The HAWC (High Altitude Water Cherenkov) observatory, located on the slopes of the Sierra Negra volcano in the state of Puebla, Mexico, was designed with the goal of detecting gamma-rays in the Teraelectron- volt energy range. However, most of the air showers that are detected with the observatory, with a rate of ≈ 27 kHz, are of hadronic origin. This makes that, after three years of operations, HAWC has accumulated a very large data set that allows to perform cosmic-ray analysis of high precision. The details of the observatory operation, as well as a selection of recent results in cosmic-ray physics are discussed in this work.


2012 ◽  
Vol 11 (3) ◽  
pp. 195-197 ◽  
Author(s):  
Syed F. Akber

AbstractThe quality factor for x-rays, gamma rays and electrons assigned as one need to be revised. It is observed that as the energy decreases, mean lethal radiation dose (Do)decreases as well and become more potent. It is therefore proposed that radiation quality in biological systems should be assessed in the mitotic phase of the cell cycles. Furthermore, based on the mean lethal radiation dose within specific energy range, an appropriate quality factor of x-rays, gamma rays and electrons should be assigned.


1993 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
R.W. Clay ◽  
B.R. DawSOn

AbstractGround-based gamma-ray astronomy has slowly developed over the past quarter of a century to a position now where a number of sources are known to produce gamma-rays in the energy range 1011eV to 1018eV. The observations are difficult, with exceptional signal to noise problems, but improved techniques are now allowing observers to proceed with confidence. In this paper the physical bases of the observations are emphasised to show the important issues in the field and the present state of the observations is indicated.


2005 ◽  
Vol 20 (29) ◽  
pp. 7016-7019 ◽  
Author(s):  
A. MISHEV ◽  
S. MAVRODIEV ◽  
J. STAMENOV

We present a new method for ground based gamma ray astronomy based only on atmospheric Cherenkov light flux analysis. The Cherenkov light flux densities in extensive air showers initiated by different primaries are simulated in the energy range 100 GeV – 100 PeV for different primaries using the CORSIKA 6.003 code at (536 g/cm2). An approximation of lateral distribution of Cherenkov light flux densities in EAS is obtained using a nonlinear fit such as Breit-Wigner. The simulated and reconstructed events are compared and the accuracy in energy and primary mass reconstruction are obtained.


Sign in / Sign up

Export Citation Format

Share Document