The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements

2004 ◽  
Vol 49 (8) ◽  
pp. 1569-1582 ◽  
Author(s):  
B Reniers ◽  
F Verhaegen ◽  
S Vynckier
Author(s):  
A Mozaffari ◽  
M Ghorbani

Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachytherapy sources by Monte Carlo simulation. Methods: In this study, 60Co (model Co0.A86), 137Cs (model 6520-67), 192Ir (model BEBIG) and 103Pd (model OptiSeed) brachytherapy sources were simulated using MCNPX Monte Carlo code. To simulate the sources, the exact geometric characterization of each source was defined in Monte Carlo input programs. Dosimetric parameters including air kerma strength, dose rate constant, radial dose function and anisotropy function were calculated for each source. Each input program was run with sufficient number of particle histories. The maximum type A statistical uncertainty in the simulation of the 60Co, 137Cs, 192Ir and 103Pd sources, were equal to 4%, 4%, 3.19% and 6.50%, respectively. Results: The results for dosimetry parameters of dose rate constant, radial dose function and anisotropy function for the 60Co, 137Cs, 192Ir and 103Pd sources in this study demonstrated good agreement with other studies. Conclusion: Based on the good agreement between the results of this study and other studies, the TG-43 results for Co0.A86 60Co, 67-65200 137Cs, BEBIG 192Ir and OptiSeed 103Pd sources are validated and can be used as input data in treatment planning systems (TPSs) and to validate the TPS calculations.


2019 ◽  
Vol 25 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Zeinab Fardi ◽  
Payvand Taherparvar

Abstract Permanent and temporary implantation of I-125 brachytherapy sources has become an official method for the treatment of different cancers. In this technique, it is essential to determine dose distribution around the brachytherapy source to choose the optimal treatment plan. In this study, the dosimetric parameters for a new interstitial brachytherapy source I-125 (IrSeed-125) were calculated with GATE/GEANT4 Monte Carlo code. Dose rate constant, radial dose function and 2D anisotropy function were calculated inside a water phantom (based on the recommendations of TG-43U1 protocol), and inside several tissue phantoms around the IrSeed-125 capsule. Acquired results were compared with MCNP simulation and experimental data. The dose rate constant of IrSeed-125 in the water phantom was about 1.038 cGy·h−1U−1 that shows good consistency with the experimental data. The radial dose function at 0.5, 0.9, 1.8, 3 and 7 cm radial distances were obtained as 1.095, 1.019, 0.826, 0.605, and 0.188, respectively. The results of the IrSeed-125 is not only in good agreement with those calculated by other simulation with MCNP code but also are closer to the experimental results. Discrepancies in the estimation of dose around IrSeed-125 capsule in the muscle and fat tissue phantoms are greater than the breast and lung phantoms in comparison with the water phantom. Results show that GATE/GEANT4 Monte Carlo code produces accurate results for dosimetric parameters of the IrSeed-125 LDR brachytherapy source with choosing the appropriate physics list. There are some differences in the dose calculation in the tissue phantoms in comparison with water phantom, especially in long distances from the source center, which may cause errors in the estimation of dose around brachytherapy sources that are not taken account by the TG43-U1 formalism.


Sign in / Sign up

Export Citation Format

Share Document