Growth and Characterization of High Quality Si 1- x-y Ge x C y Alloy Grown by Ultra-High Vacuum Chemical Vapor Deposition

1999 ◽  
Vol 16 (10) ◽  
pp. 750-752 ◽  
Author(s):  
Zhen Qi ◽  
Jing-yun Huang ◽  
Zhi-zhen Ye ◽  
Huan-ming Lu ◽  
Wei-hua Chen ◽  
...  
2008 ◽  
Vol 1068 ◽  
Author(s):  
Mustafa Jamil ◽  
Joseph P Donnelly ◽  
Se-Hoon Lee ◽  
Davood Shahrjerdi ◽  
Tarik Akyol ◽  
...  

ABSTRACTWe report the growth and characterization of thin germanium-carbon layers grown directly on Si (111) by ultra high-vacuum chemical vapor deposition. The thickness of the films studied is 8-20 nm. The incorporation of small amount (less than 0.5%) of carbon facilitates 2D growth of high quality Ge crystals grown directly on Si (111) without the need of a buffer layer. The Ge1−xCx layers were grown in ultra high vacuum chemical vapor deposition chamber, at a typical pressure of 50 mTorr and at a growth temperature of 440 °C. CH3GeH3 and GeH4 gases were used as the precursors for the epitaxial growth. The Ge1−xCx films were characterized by atomic force microscopy (AFM), secondary ion mass spectroscopy, x-ray diffraction, cross-sectional transmission electron microscopy and Raman spectroscopy. The AFM rms roughness of Ge1−xCx grown directly on Si (111) is only 0.34 nm, which is by far the lowest rms roughness of Ge films grown directly on Si (111). The dependence of growth rate and rms roughness of the films on temperature, C incorporation and deposition pressure was studied. In Ge, (111) surface orientation has the highest electron mobility; however, compressive strain in Ge degrades electron mobility. The technique of C incorporation leads to a low defect density Ge layer on Si (111), well above the critical thickness. Hence high quality crystalline layer of Ge directly on Si (111) can be achieved without compressive strain. The fabricated MOS capacitors exhibit well-behaved electrical characteristics. Thus demonstrate the feasibility of Ge1−xCx layers on Si (111) for future high-carrier-mobility MOS devices that take advantage of high electron mobility in Ge (111).


1991 ◽  
Vol 6 (9) ◽  
pp. 1913-1918 ◽  
Author(s):  
Jiong-Ping Lu ◽  
Rishi Raj

Chemical vapor deposition (CVD) of titanium oxide films has been performed for the first time under ultra-high vacuum (UHV) conditions. The films were deposited through the pyrolysis reaction of titanium isopropoxide, Ti(OPri)4, and in situ characterized by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A small amount of C incorporation was observed during the initial stages of deposition, through the interaction of precursor molecules with the bare Si substrate. Subsequent deposition produces pure and stoichiometric TiO2 films. Si–O bond formation was detected in the film-substrate interface. Deposition rate was found to increase with the substrate temperature. Ultra-high vacuum chemical vapor deposition (UHV-CVD) is especially useful to study the initial stages of the CVD processes, to prepare ultra-thin films, and to investigate the composition of deposited films without the interference from ambient impurities.


2019 ◽  
Vol 507 ◽  
pp. 113-117 ◽  
Author(s):  
Jiaqi Wang ◽  
Limeng Shen ◽  
Guangyang Lin ◽  
Jianyuan Wang ◽  
Jianfang Xu ◽  
...  

2006 ◽  
Vol 11-12 ◽  
pp. 693-696 ◽  
Author(s):  
S. Kawaguchi ◽  
K.C. Namiki ◽  
S. Ohshio ◽  
Junichi Nishino ◽  
H. Saitoh

Magnesium oxide (MgO) films are utilized for the anti-plasma sputtering coating with excellent ability of secondary electron emission in plasma display panels (PDP). These properties are degraded by the impurities adsorbed on the film surface. Therefore, we should obtain impurity-free surface during the PDP manufacturing process. We have synthesized whisker and continuous film types of metal oxide using a chemical vapor deposition (CVD) method operated under atmosphere. In this study, a temperature programmed desorption method has been applied to detect residual species adsorbed on the surface of the present films in the ultra-high vacuum atmosphere. The amount of water adsorption was determined by this method.


2007 ◽  
Vol 2 (3) ◽  
pp. 149-154
Author(s):  
Rui Wang ◽  
Soon Fatt Yoon ◽  
Fen Lu ◽  
Wei Jun Fan ◽  
Chong Yang Liu ◽  
...  

1990 ◽  
Vol 193-194 ◽  
pp. 595-609 ◽  
Author(s):  
S.V Nguyen ◽  
D Dobuzinsky ◽  
D Dopp ◽  
R Gleason ◽  
M Gibson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document