High Bulk Modulus of Nanocrystal γ-Fe 2 O 3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure

2000 ◽  
Vol 17 (2) ◽  
pp. 126-128 ◽  
Author(s):  
Jing Zhao ◽  
Lin Guo ◽  
Jing Liu ◽  
Yang Yang ◽  
Rong-Zheng Che ◽  
...  
Keyword(s):  
Author(s):  
Tomasz Poreba ◽  
Gaston Garbarino ◽  
Davide Comboni ◽  
Mohamed Mezouar

Dicaesium octaiodide is composed of layers of zigzag polyiodide units (I8 2−) intercalated with caesium cations. Each I8 2− unit is built of two triiodides bridged with one diiodine molecules. This system was subjected to compression up to 5.9 GPa under hydrostatic conditions. Pressure alters the supramolecular architecture around I8 2−, leading to bending of the triiodide units away from their energetically preferred geometry (D ∞h). Short I2...I3 − contacts compress significantly, reaching lengths typical for the covalently bonded polyiodides. Unlike in reported structures at ambient conditions, pressure-induced catenation proceeds without symmetrization of the polyiodides, pointing to a different electron-transfer mechanism. The structure is shown to be half as compressible [B0 = 12.9 (4) GPa] than the similar CsI3 structure. The high bulk modulus is associated with higher I—I connectivity and a more compact cationic net, than in CsI3. The small discontinuity in the compressibility trend around 3 GPa suggests formation of more covalent I—I bonds. The potential sources of this discontinuity and its implication on the electronic properties of Cs2I8 are discussed.


2017 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Salah Daoud

The thermal properties of cubic zincblende (B3) thallium - phosphide (TlP) compound under high pressure up to 12 GPa have been studied using the quasi-harmonic Debye model approximation. The relative unit cell volume, the isothermal bulk modulus, the first order derivative isothermal bulk modulus, the Debye temperature and the Grüneisen parameter are studied at zero-temperature and at standard ambient temperature (298 K) respectively. Our obtained values of the different previous quantities are in general in agreement compared to other theoretical data of the literature.


2009 ◽  
Vol 1 (2) ◽  
pp. 275-280
Author(s):  
Seema Gupta ◽  
S. C. Goyal

The present study deals with the elastic behaviour of diborides (BeB2, MgB2 and NbB2) under high pressure with the help of equation of state (EOS) using the elastic data reported by Islam et al. It is concluded that EOS, which are based either on quantum statistical model or  pseduopotential model, only are capable of explaining high pressure behaviour of the solids under study.  Moreover the value of first order pressure derivative of bulk modulus at infinite pressure (Kinfinity) is greater than 5/3 and thus the diborides under study do not behave as Thomas-Fermi electron gas under high compression. Keywords: Equation of state; High Pressure; Diborides. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1189 


2020 ◽  
Vol 34 (34) ◽  
pp. 2050393
Author(s):  
Lun Xiong ◽  
Bin Li ◽  
Bi Liang ◽  
Jinxia Zhu ◽  
Hong Yi ◽  
...  

The equation of state (EOS) of HfC and nanosized TiC at high pressure has been studied by means of synchrotron radiation X-ray diffraction (XRD) in a diamond anvil cell (DAC) at ambient temperature, and density functional theory (DFT) calculations. XRD analysis showed that the cubic structure of HfC and nanosized TiC maintained to the maximum pressures. The XRD data yield a bulk modulus [Formula: see text] GPa with [Formula: see text] of HfC. In addition, the bulk modulus of nanosized TiC derived from XRD data is [Formula: see text] GPa with [Formula: see text].


2008 ◽  
Vol 2008 (7-2) ◽  
pp. 329-334 ◽  
Author(s):  
Toshiyuki TSUBOUCHI ◽  
Hideto KAMIMURA ◽  
Jitsuo SHINODA
Keyword(s):  

2016 ◽  
Vol 5 (3) ◽  
pp. 397-400
Author(s):  
R. S. Singh ◽  
Deepti Sahrawat

Author(s):  
Sven Osterland ◽  
Jürgen Weber

This paper investigates the flow through a hydraulic pressure relief valve at high levels of operating pressure up to 700 bar (10000 Psi). Following the flow path from the cold high pressure region before the metering edge to the warm low pressure region behind, the mean viscosity decreases by a factor of 16, the mean bulk modulus decreases by a factor of 2 and the mean density decreases by 6 %. Based on this preliminary considerations, a turbulent single phase flow considering pressure and temperature dependent viscosity, bulk modulus and density is modelled and steady state as well as transient calculations are performed. The results of this study show that a pressure and temperature dependent viscosity reduces the pressure drop and the spool force by 10 % compared to a simulation with constant fluid parameters. Moreover, it is shown that compressible flow modelling has negligible influence on pressure drop and spool force — nevertheless, it is required to describe the temperature correctly. Due to the effect of volumetric work an incompressible model approach predicts the mean temperature rise 20 % too high. Finally, it was found that the temperature on the spool exceeds 400 °C. Afterwards, this fact is experimentally validated obtaining tempering colors in high pressure tests.


Sign in / Sign up

Export Citation Format

Share Document