Second Virtual Pitch Shift in Cochlea Observed In Situ via Laser Interferometry

2021 ◽  
Vol 38 (2) ◽  
pp. 024301
Author(s):  
Zhang-Cai Long ◽  
Yan-Ping Zhang ◽  
Lin Luo
1989 ◽  
Vol 157 ◽  
Author(s):  
Young-Jin Jeon ◽  
M.F. Becker ◽  
R.M. Walser

ABSTRACTThis work was concerned with comparing the relative effects of boron and phosphorus impurities on the solid phase epitaxial (SPE) regrowth rate of self-ion amorphized layers in silicon wafers with (100) orientation. We used previously reported data measured by in situ, high precision, cw laser interferometry during isothermal annealing for temperatures from 450°C to 590°C, and concentrations in the range from 7.8×1018 cm-3 to 5×l020 cm-3 for boron (NB), and from 5×l017 cm-3 to 3×1020 cm-3 for phosphorus (Np) impurities. The basis for the comparison was a recently developed model that extends the Spaepen-Turnbull model for silicon recrystallization to include ionization enhanced processes.The experimental data for bom boron and phosphorus exhibited the linear variation in regrowth rate expected for low concentrations of implanted hydrogenic impurities having a concentration-independent fractional ionization in amorphous silicon. In the linear range the relative enhanced regrowth rate produced by these impurities can be expressed as a product of their, relative fractional ionizations, and the relative amount the rate constant for reconstruction is altered by localizing an electron, or a hole, at the reconstruction site. Assuming that a localized hole and electron equally softened the potential barrier for reconstruction, the experimental results indicated that boron had an ?40 meV lower barrier to ionization in amorphous silicon than phosphorus.The variations in the SPE regrowth rates with higher concentrations of both implanted boron and phosphorus were well fit by quadratic equations, but with different curvatures (+ and - for B and P respectively). This result was interpreted to indicate that SPE regrowth was further enhanced by localized hole pairs, but retarded by localized electron pairs.


1991 ◽  
Vol 237 ◽  
Author(s):  
R. M. Walser ◽  
Byung-Hak Lee ◽  
Alaka Valanju ◽  
Winston Win ◽  
M. F. Becker

ABSTRACTWe report the first kinetic study of metal-semiconductor interface reactions using in-situ, time resolved, laser interferometry. Diffusion couples with Co/Ge thicknesses of 1500 Å/1500 Å were sputter deposited on silicon wafers, and vacuum-annealed at temperatures between 300°C-400°C. Under these conditions polycrystalline CoGe was expected to form [1]. Real time laser (HeNe 6328 Å) interferograms for each anneal were recorded in-situ. These data were supplemented by information from AES and X-ray.For temperatures below 400°C the diffusion controlled formation of CoGe was observed. The composition was confirmed by Auger depth profiling that showed uniform Co and Ge concentrations when the reaction went to completion. The well defined interferences fringes were formed by the dissolution of amorphous Ge. The activation energy = 1.6 eV for the formation of CoGe were determined with precision from the temperature dependence of the time required to anneal the fixed λ/4 distance between adjacent minima and maxima of the interferogram. We discuss the evidence for formation of an intermediate Co-rich compound following the initial diffusion of Co into Ge. The results of these experiments indicate that optical interferometry will be a valuable adjunct to other techniques used to study metal-semiconductor interface reactions.


2019 ◽  
Vol 36 (2) ◽  
pp. 024302
Author(s):  
Zhang-Cai Long ◽  
Tao Shen ◽  
Yan-Ping Zhang ◽  
Lin Luo

1988 ◽  
Vol 128 ◽  
Author(s):  
Young- Jin Jeon ◽  
Won Woo Park ◽  
M. F. Becker ◽  
Rodger. M. Walser

ABSTRACTIn this work we measured the functional dependence of the solid phase epitaxial (SPE) regrowth of amorphous silicon on the implanted phosphorous concentration, Np. The growth rates of self-ion amorphized layers in silicon wafers with (100) substrate orientation were measured by in situ, high precision, isothermal cw laser interferometry for temperatures from 460°C to 590°C, and concentrations in the range 2x1017 cm-3<Np<4x1020 cm-3. For low impurity concentrations, the fractional increase in the intrinsic SPE growth velocity ΔV/Vi depended linearly on Np as previously established for boron. For a given impurity concentration, the relative change V/Vi decreased with increasing annealing temperature.


1990 ◽  
Vol 5 (8) ◽  
pp. 1733-1738 ◽  
Author(s):  
Stephen R. Cain ◽  
Luis J. Matienzo ◽  
David W. Wang

An experimental silicon-containing benzocyclobutene thermosetting resin from DOW has been evaluated for use as a plasma etch stop in packaging applications. The thermal and etch properties of this particular resin (DOW UX-13005.02L) make it suitable for use as an etch stop. Further, a model for in situ laser interferometry is proposed. By applying the model to the laser interferogram, the initial etch rate and amount of material removed before etching ceases may be determined.


Author(s):  
Jacky Chow ◽  
Yong-Jun Lai

Heterodyne laser interferometry is an optical technique often used to measure displacement of surfaces along the wave vector direction of a measurement laser. For common microelectromechanical system (MEMS) testing setup, such laser wave vector is perpendicular to the substrate which the micromachined devices stand on. Therefore, this technique can only be used to characterize dynamics of the micro devices in the direction perpendicular to their substrate (out-of-plane motions) with the classic setup and it is not able to measure any motion that is parallel to the substrate (in-plane motions). In this study, in-situ micromirrors are fabricated onto a microstructure that is near the device to be measured by using a focused ion beam system. The micromirrors have a slant angle of approximate 45 degree to horizontal surface (or their substrate). By using the post-fabricated in-situ micromirror, the measurement laser of a heterodyne interferometer can be directed into horizontal plane which enables characterization of in-plane motions for micromechanical. To experimentally demonstrate the technique a micro cantilever fabricated using MetalMUMPs is used. The micro cantilever is excited by inplane electrostatic force. The results confirm the effectiveness of the method by the fact that the magnitude of the measured in-plane signal is increased by more than ten folds.


1991 ◽  
Author(s):  
Christophe Pierrat ◽  
Patrick J. Paniez ◽  
P. Martin

Sign in / Sign up

Export Citation Format

Share Document