Using an In-Situ Micromirror to Assist the Measurement of In-Plane Vibration of Microstructures

Author(s):  
Jacky Chow ◽  
Yong-Jun Lai

Heterodyne laser interferometry is an optical technique often used to measure displacement of surfaces along the wave vector direction of a measurement laser. For common microelectromechanical system (MEMS) testing setup, such laser wave vector is perpendicular to the substrate which the micromachined devices stand on. Therefore, this technique can only be used to characterize dynamics of the micro devices in the direction perpendicular to their substrate (out-of-plane motions) with the classic setup and it is not able to measure any motion that is parallel to the substrate (in-plane motions). In this study, in-situ micromirrors are fabricated onto a microstructure that is near the device to be measured by using a focused ion beam system. The micromirrors have a slant angle of approximate 45 degree to horizontal surface (or their substrate). By using the post-fabricated in-situ micromirror, the measurement laser of a heterodyne interferometer can be directed into horizontal plane which enables characterization of in-plane motions for micromechanical. To experimentally demonstrate the technique a micro cantilever fabricated using MetalMUMPs is used. The micro cantilever is excited by inplane electrostatic force. The results confirm the effectiveness of the method by the fact that the magnitude of the measured in-plane signal is increased by more than ten folds.

Author(s):  
Jiyoung Chang ◽  
Jongbaeg Kim ◽  
Byung-Kwon Min ◽  
Sang Jo Lee ◽  
Liwei Lin

Schemes for in-situ resonant frequency tuning of nano scale vibrating structures using Focused Ion Beam (FIB) sputtering and FIB-Chemical Vapor Deposition (CVD) are presented. This approach introduces precisely controlled permanent increase or decrease of resonant frequencies on processed nano structures, enabling the frequency adjustment when the desired resonant frequency is higher or lower than the actual frequency of the fabricated resonators. The vibration is induced by electrostatic force between resonator and stator using 0~10V AC input and all the processes including fabrication of nanostructure, electrostatic actuation, vibration observation and frequency tuning in either higher or lower direction were successfully conducted in single FIB chamber. The range of the frequency tuned from 600kHz initial resonant frequency is +6kHz with -1.9μm and -65kHz with +1.1μm length change of the nano-resonator respectively. Structural FEM analysis result is compared with the experimental result.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2019 ◽  
Author(s):  
Genevieve Buckley ◽  
Gediminas Gervinskas ◽  
Cyntia Taveneau ◽  
Hari Venugopal ◽  
James C. Whisstock ◽  
...  

AbstractCryo-transmission electron tomography (cryo-ET) in association with cryo-focused ion beam (cryo-FIB) milling enables structural biology studies to be performed directly within the cellular environment. Cryo-preserved cells are milled and a lamella with a thickness of 200-300 nm provides an electron transparent window suitable for cryo-ET imaging. Cryo-FIB milling is an effective method, but it is a tedious and time-consuming process, which typically results in ~10 lamellae per day. Here, we introduce an automated method to reproducibly prepare cryo-lamellae on a grid and reduce the amount of human supervision. We tested the routine on cryo-preserved Saccharomyces cerevisiae and demonstrate that this method allows an increased throughput, achieving a rate of 5 lamellae/hour without the need to supervise the FIB milling. We demonstrate that the quality of the lamellae is consistent throughout the preparation and their compatibility with cryo-ET analyses.


2016 ◽  
Vol 713 ◽  
pp. 66-69
Author(s):  
Walter Costin ◽  
Olivier Lavigne ◽  
Andrei G. Kotousov

This paper focuses on the application of miniaturized fracture tests to evaluate the fracture and hydrogen assisted cracking (HAC) resistance of a selected microstructural constituent (acicular ferrite, AF) which only occurs in microscopic material volumes. Site-specific Focused Ion Beam (FIB) micro-machining was used to fabricate sharply notched micro-cantilevers into a region fully constituting of AF. The micro-cantilevers were subsequently tested under uncharged and hydrogen charged conditions with a nanoindenter. The load displacement curves were recorded and analysed with a simplified plastic hinge model for the uncharged specimen, as AF demonstrated an essentially ductile behaviour. The simplified model assisted with FE simulations provided values of the critical plastic crack tip opening displacement (CTOD). A value of the conditional fracture toughness was thereby determined as 12.1 MPa m1/2. With LEFM, a threshold stress intensity factor, Kth, to initiate hydrogen crack propagation in AF was found to range between 1.56 MPa m1/2 and 4.36 MPa m1/2. All these values were significantly below the corresponding values reported for various ferrous alloys in standard macro-tests. This finding indicates that the fracture and HAC resistance at the micro-scale could be very different than at the macro-scale as not all fracture toughening mechanisms may be activated at this scale level.


2006 ◽  
Vol 983 ◽  
Author(s):  
Todd Simpson ◽  
Ian V Mitchell

AbstractAperture arrays were fabricated in 1.0µm thick gold films supported on 20nm thick silicon nitride membranes. Lithographic milling strategies in gold were evaluated through the use of in-situ sectioning and high resolution SEM imaging with the UWO CrossBeam FIB/SEM. A successful strategy for producing a 250nm diameter hole with sidewalls approaching vertical is summarized.


2003 ◽  
Vol 777 ◽  
Author(s):  
B.J. Inkson ◽  
G. Dehm

AbstractPt nanowires have been produced by FIB deposition of Pt thin films in a commercial Ga+ focused ion beam (FIB) system, followed by cross-sectional sputtering to form electron transparent Pt nanowires. The thermal stability of amorphous FIB manufactured Pt wires has been investigated by in-situ thermal cycling in a TEM. The Pt wires are stable up to 580-650°C where partial crystallization is observed in vacuum. Facetted nanoparticles grow on the wire surface, growing into free space by surface diffusion and minimising contact area with the underlying wire. The particles are fcc Pt with some dissolved Ga. Continued heating results in particle spheroidization, coalescence and growth, retaining the fcc structure.


2016 ◽  
Vol 49 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Paul A. Shade ◽  
David B. Menasche ◽  
Joel V. Bernier ◽  
Peter Kenesei ◽  
Jun-Sang Park ◽  
...  

An evolving suite of X-ray characterization methods are presently available to the materials community, providing a great opportunity to gain new insight into material behavior and provide critical validation data for materials models. Two critical and related issues are sample repositioning during an in situ experiment and registration of multiple data sets after the experiment. To address these issues, a method is described which utilizes a focused ion-beam scanning electron microscope equipped with a micromanipulator to apply gold fiducial markers to samples for X-ray measurements. The method is demonstrated with a synchrotron X-ray experiment involving in situ loading of a titanium alloy tensile specimen.


2020 ◽  
Vol 279 (3) ◽  
pp. 212-216
Author(s):  
STUART ROBERTSON ◽  
SCOTT DOAK ◽  
FU‐LONG SUN ◽  
ZHI‐QUAN LIU ◽  
CHANGQING LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document