On the specific contact resistance of metal contacts to p-type GaN

2006 ◽  
Vol 21 (12) ◽  
pp. 1738-1742 ◽  
Author(s):  
L Lewis ◽  
P P Maaskant ◽  
B Corbett
2000 ◽  
Vol 640 ◽  
Author(s):  
Xaiobin Wang ◽  
Stanislav Soloviev ◽  
Ying Gao ◽  
G. Straty ◽  
Tangali Sudarshan ◽  
...  

ABSTRACTOhmic contacts to p-type SiC were fabricated by depositing Al/Ni and Al/Ti followed by high temperature annealing. A p-type layer was fabricated by Al or B diffusion from vapor phase into both p-type and n-type substrates. The thickness of the diffused layer was about 0.1–0.2 μm with surface carrier concentration of about 1.0×1019cm−3. Metal contacts to a p-type substrate with a background doping concentration of 1.2×1018cm−3, without a diffusion layer, were also formed. The values of specific contact resistance obtained by Circular Transmission Line Method (CTLM) and Transfer Length Method (TLM) for the n-type substrate, and by Cox & Strack method for p-type substrate, respectively, varied from 1.3×10−4Ωcm2 to 8.8×10−3 Ωcm2. The results indicate that the specific contact resistance could be significantly reduced by creating a highly doped diffused surface layer.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


1993 ◽  
Vol 318 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves

ABSTRACTOhmic contacts to p-type InP with an In0.47Ga0.53As buffer layer and an interposed superlattice of 50 Å In0.47Ga0.53As/ 50 Å InP have been investigated. Initial studies of contacts to In0.47Ga0.53As/ InP without the superlattice structure have shown that Pd/Zn/Pd/Au metallization produced a lower specific contact resistance (pc = 1.1 × 10−4 Ω cm2) than Pd/Ge/Au, and over a wider range of anneal temperature than Au/Zn/Au. The incorporation of the superlattice in the p-In0.47Ga0.53As/ InP structure resulted in Pd/Zn/Pd/Au contacts with pc of 3.2 × 10−5 Ω cm2 as-deposited and 7.5 × 10−6 Ω.cm2 after a 500 °C anneal. The presence of Pd/Zn in the metallization was shown as important in reducing pc. Significant intermixing of the metal layers and In0.47Ga0.53As occured at ≥ 350 °C, as revealed by Rutherford backscattering spectrometry.


1999 ◽  
Vol 4 (S1) ◽  
pp. 684-690
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

Sputter-deposited W-based contacts on p-GaN (NA∼1018 cm−3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


2018 ◽  
Vol 924 ◽  
pp. 385-388 ◽  
Author(s):  
Roberta Nipoti ◽  
Maurizio Puzzanghera ◽  
Maria Concetta Canino ◽  
Giovanna Sozzi ◽  
Paolo Fedeli

This study shows that a thin Ni film on Al/Ti/4H-SiC metal pads allows to preserve the pad form factor during a 1000 °C/2 min treatment, provided that the Al and Ti film thicknesses are sufficiently thin. Moreover, by reducing the Al to Ti thickness ratio, droplet formation in the contact area is avoided and a mirror-like appearance is obtained. This optimal contact morphology corresponds to a specific contact resistance of few 10-4Ωcm2at room temperature on p-type 4H-SiC with resistivity in the range 0.1 – 1 Ωcm.


2009 ◽  
Vol 12 (9) ◽  
pp. H315 ◽  
Author(s):  
Ray-Ming Lin ◽  
Yi-Lun Chou ◽  
Wan-Ching Tseng ◽  
Chia-Lung Tsai ◽  
Jen-Chih Li ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 639-642
Author(s):  
Duy Minh Nguyen ◽  
Christophe Raynaud ◽  
Mihai Lazar ◽  
Heu Vang ◽  
Dominique Planson

N+ 4H-SiC commercial substrates with n-type epilayers have been used to realize bipolar diodes and TLM structures. The p-type emitter of diodes was realized by Al implantations followed by a post-implantation annealing with or without a graphite capping layer. Ohmic contacts were formed by depositing Ti/Ni on the backside and Ni/Al on the topside of the wafer. It appears that capping the sample during the annealing reduces considerably the surface roughness and the specific contact resistance. Sheet resistance and specific contact resistance as low as 2kΩ/□ and respectively 1.75×10-4 Ωcm² at 300 K have been obtained. I-V measurements as a function of temperature have been performed from ~100 to ~500 K. The variations of the series resistance vs. temperature can be explained by the freeze-out of carriers and by the variation of carrier mobility.


2015 ◽  
Vol 821-823 ◽  
pp. 432-435 ◽  
Author(s):  
Tony Abi-Tannous ◽  
Maher Soueidan ◽  
Gabriel Ferro ◽  
Mihai Lazar ◽  
Berangère Toury ◽  
...  

In order to form Ti3SiC2 on 4H-SiC(0001) 8°-off, 200 nm of Ti30Al70 was deposited onto SiC substrates by magnetron sputtering from pure Ti30Al70 targets. The samples were then annealed at 1000°C for 10 min under Ar atmosphere in a Rapid Thermal Annealing (RTA) furnace. Structural analyses reveal the formation of epitaxial hexagonal Ti3SiC2 (0001) oriented. Elemental analyses show that high amount of Al and O elements are present inside the deposit. Obviously, the formation of Ti3SiC2 is accompanied by parasitic Al oxide, probably due to some unwanted oxygen residual in the RTA chamber. By using proper backing steps before the annealing, the deposit is not anymore composed of only Ti3SiC2 but accompanied with other compounds (Al3Ti, and Al). On the oxide-free sample, the specific contact resistance ρc of the Ti3SiC2 based contact on p-type 4H-SiC (having Na= 2×1019 cm-3) was measured to be as low as 6×10-5 Ω.cm2.


2008 ◽  
Vol 29 (4) ◽  
pp. 378-381 ◽  
Author(s):  
N. Stavitski ◽  
M.J.H. van Dal ◽  
A. Lauwers ◽  
C. Vrancken ◽  
A.Y. Kovalgin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document