scholarly journals Assessing composition gradients in multifilamentary superconductors by means of magnetometry methods

2016 ◽  
Vol 30 (1) ◽  
pp. 014011 ◽  
Author(s):  
T Baumgartner ◽  
J Hecher ◽  
J Bernardi ◽  
S Pfeiffer ◽  
C Senatore ◽  
...  
Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (7) ◽  
pp. 1234-1242 ◽  
Author(s):  
Cédric Laval ◽  
Anne Bouchaudy ◽  
Jean-Baptiste Salmon

Fabrication of microscale materials with programmable composition gradients using the coupling of pervaporation and Quake valves.


Author(s):  
Daniel B. Miracle ◽  
Mu Li ◽  
Zhaohan Zhang ◽  
Rohan Mishra ◽  
Katharine M. Flores

Structural materials have lagged behind other classes in the use of combinatorial and high-throughput (CHT) methods for rapid screening and alloy development. The dual complexities of composition and microstructure are responsible for this, along with the need to produce bulk-like, defect-free materials libraries. This review evaluates recent progress in CHT evaluations for structural materials. High-throughput computations can augment or replace experiments and accelerate data analysis. New synthesis methods, including additive manufacturing, can rapidly produce composition gradients or arrays of discrete alloys-on-demand in bulk form, and new experimental methods have been validated for nearly all essential structural materials properties. The remaining gaps are CHT measurement of bulk tensile strength, ductility, and melting temperature and production of microstructural libraries. A search strategy designed for structural materials gains efficiency by performing two layers of evaluations before addressing microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT exploration of structural materials. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document