Grain size limit of nanocrystalline materials obtained by annealing glasses

2001 ◽  
Vol 13 (23) ◽  
pp. 5503-5506 ◽  
Author(s):  
Q Jiang ◽  
Z Wen ◽  
T Wang
2012 ◽  
Vol 71 (4) ◽  
pp. 219-221 ◽  
Author(s):  
Arun Pratap ◽  
Ashmi T. Patel ◽  
Heena R. Shevde ◽  
Kirit N. Lad

2009 ◽  
Vol 475 (1-2) ◽  
pp. 893-897 ◽  
Author(s):  
Zheng Chen ◽  
Feng Liu ◽  
Wei Yang ◽  
Haifeng Wang ◽  
Gencang Yang ◽  
...  

2001 ◽  
Author(s):  
J. Narayan ◽  
H. Wang ◽  
A. Kvit

Abstract We have synthesized nanocrystalline thin films of Cu, Zn, TiN, and WC having uniform grain size in the range of 5 to 100 nm. This was accomplished by introducing a couple of manolayers of materials with high surface and have a weak interaction with the substrate. The hardness measurements of these well-characterized specimens with controlled microstructures show that hardness initially increases with decreasing grain size following the well-known Hall-Petch relationship (H∝d−½). However, there is a critical grain size below which the hardness decreases with decreasing grain size. The experimental evidence for this softening of nanocrystalline materials at very small grain sizes (referred as reverse Hall-Petch effect) is presented for the first time. Most of the plastic deformation in our model is envisioned to be due to a large number of small “sliding events” associated with grain boundary shear or grain boundary sliding. This grain-size dependence of hardness can be used to create functionally gradient materials for improved adhesion and wear among other improved properties.


2019 ◽  
Vol 51 (1) ◽  
pp. 513-530 ◽  
Author(s):  
Zhenbo Zhang ◽  
Éva Ódor ◽  
Diana Farkas ◽  
Bertalan Jóni ◽  
Gábor Ribárik ◽  
...  

Abstract Nanocrystalline materials reveal excellent mechanical properties but the mechanism by which they deform is still debated. X-ray line broadening indicates the presence of large heterogeneous strains even when the average grain size is smaller than 10 nm. Although the primary sources of heterogeneous strains are dislocations, their direct observation in nanocrystalline materials is challenging. In order to identify the source of heterogeneous strains in nanocrystalline materials, we prepared Pd-10 pct Au specimens by inert gas condensation and applied high-pressure torsion (HPT) up to γ ≅ 21. High-resolution transmission electron microscopy (HRTEM) and molecular dynamic (MD) simulations are used to investigate the dislocation structure in the grain interiors and in the grain boundary (GB) regions in the as-prepared and HPT-deformed specimens. Our results show that most of the GBs contain lattice dislocations with high densities. The average dislocation densities determined by HRTEM and MD simulation are in good correlation with the values provided by X-ray line profile analysis. Strain distribution determined by MD simulation is shown to follow the Krivoglaz–Wilkens strain function of dislocations. Experiments, MD simulations, and theoretical analysis all prove that the sources of strain broadening in X-ray diffraction of nanocrystalline materials are lattice dislocations in the GB region. The results are discussed in terms of misfit dislocations emanating in the GB regions reducing elastic strain compatibility. The results provide fundamental new insight for understanding the role of GBs in plastic deformation in both nanograin and coarse grain materials of any grain size.


2004 ◽  
Vol 821 ◽  
Author(s):  
A.V. Sergueeva ◽  
N.A. Mara ◽  
A.K. Mukherjee

AbstractGrain size distribution effect on the mechanical behavior of NiTi and Vitroperm alloys were investigated. Yielding at significantly lower stresses than found in equiaxed counterparts, along with well defined strain hardening was observed in these nanocrystalline materials with large grains embedded in the matrix during tensile deformation at temperatures of 0.4Tm. At higher temperature the effect of grain size distribution on yield stress was not revealed while plasticity was increased in 50% in NiTi alloy with bimodal grain size structure.


Sign in / Sign up

Export Citation Format

Share Document