The symmetry background underlying the ring structures of quantum dots and a classification scheme

2002 ◽  
Vol 14 (36) ◽  
pp. 8549-8561 ◽  
Author(s):  
C G Bao
2009 ◽  
Vol 6 (4) ◽  
pp. 928-931 ◽  
Author(s):  
S. Bietti ◽  
C. Somaschini ◽  
M. Abbarchi ◽  
N. Koguchi ◽  
S. Sanguinetti ◽  
...  

2009 ◽  
Vol 467 (4-6) ◽  
pp. 365-368 ◽  
Author(s):  
Sougata Pal ◽  
Rahul Sharma ◽  
Biplab Goswami ◽  
Pranab Sarkar

2006 ◽  
Vol 959 ◽  
Author(s):  
Nobuyuki Koguchi

ABSTRACTWe have proposed a novel self-assembling growth method, termed Droplet Epitaxy, for the direct formation of QDs without using any lithography in 1990. Compared with the island formation based on the Stranski-Krastanow growth mode, the Droplet Epitaxy is applicable to the formation of quantum dots not only in lattice-mismatched but also in lattice-matched systems such as GaAs/AlGaAs. The process of the Droplet Epitaxy in MBE chamber consists of forming numerous III-column element droplets such as Ga or InGa with homogeneous size of around 10 nm on the substrate surface first by supplying their molecular beams, and then reacting the droplets with As molecular beam to produce GaAs or InGaAs epitaxial microcrystals. Another advantage of the Droplet Epitaxy is the possibility of the fabrication of QDs structures without wetting layer by cotrolling the stoichiometry of the substrate surface just before the deposition of III-column element droplets. Also we can control the shape of the QDs structure self-organizingly such as pyramidal shape, single-ring shape and concentric double-ring shape. These ring structures will provide excellent possibilities for the investigation of quantum topological phenomena.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1988 ◽  
Vol 102 ◽  
pp. 343-347
Author(s):  
M. Klapisch

AbstractA formal expansion of the CRM in powers of a small parameter is presented. The terms of the expansion are products of matrices. Inverses are interpreted as effects of cascades.It will be shown that this allows for the separation of the different contributions to the populations, thus providing a natural classification scheme for processes involving atoms in plasmas. Sum rules can be formulated, allowing the population of the levels, in some simple cases, to be related in a transparent way to the quantum numbers.


Author(s):  
J C Walmsley ◽  
A R Lang

Interest in the defects and impurities in natural diamond, which are found in even the most perfect stone, is driven by the fact that diamond growth occurs at a depth of over 120Km. They display characteristics associated with their origin and their journey through the mantle to the surface of the Earth. An optical classification scheme for diamond exists based largely on the presence and segregation of nitrogen. For example type Ia, which includes 98% of all natural diamonds, contain nitrogen aggregated into small non-paramagnetic clusters and usually contain sub-micrometre platelet defects on {100} planes. Numerous transmission electron microscope (TEM) studies of these platelets and associated features have been made e.g. . Some diamonds, however, contain imperfections and impurities that place them outside this main classification scheme. Two such types are described.First, coated-diamonds which possess gem quality cores enclosed by a rind that is rich in submicrometre sized mineral inclusions. The transition from core to coat is quite sharp indicating a sudden change in growth conditions, Figure 1. As part of a TEM study of the inclusions apatite has been identified as a major constituent of the impurity present in many inclusion cavities, Figure 2.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document