Time-resolved x-ray diffraction measurement of C60under high pressure and temperature using synchrotron radiation

2002 ◽  
Vol 14 (44) ◽  
pp. 10483-10486 ◽  
Author(s):  
T Horikawa ◽  
K Suito ◽  
M Kobayashi ◽  
A Onodera
2001 ◽  
Vol 287 (1-2) ◽  
pp. 143-151 ◽  
Author(s):  
Takashi Horikawa ◽  
Kaichi Suito ◽  
Michihiro Kobayashi ◽  
Akifumi Onodera

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 267 ◽  
Author(s):  
Vincenzo Stagno ◽  
Veronica Stopponi ◽  
Yoshio Kono ◽  
Annalisa D’Arco ◽  
Stefano Lupi ◽  
...  

Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively.


1999 ◽  
Vol 32 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Naoki Sasaki ◽  
Norifumi Shukunami ◽  
Norio Matsushima ◽  
Yoshinobu Izumi

2009 ◽  
Vol 24 (6) ◽  
pp. 2089-2096 ◽  
Author(s):  
Shanmin Wang ◽  
Duanwei He ◽  
Yongtao Zou ◽  
Jianjun Wei ◽  
Li Lei ◽  
...  

Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.


1992 ◽  
Vol 8 (5-6) ◽  
pp. 711-713
Author(s):  
Yuechao Zhao ◽  
Rongzheng Che ◽  
Esheng Tang ◽  
Dingchang Xian

2008 ◽  
Vol 72 (2) ◽  
pp. 683-695 ◽  
Author(s):  
J. P. Perrillat

AbstractSynchrotron X-ray diffraction (XRD) is a powerful technique to study in situ and in real-time the structural and kinetic processes of pressure-induced phase transformations. This paper presents the experimental set-up developed at beamline ID27 of the ESRF to perform time-resolved angle dispersive XRD in the Paris-Edinburgh cell. It provides a practical guide for the acquisition of isobaric-isothermal kinetic data and the construction of transformation-time plots. The interpretation of experimental data in terms of reaction mechanisms and transformation rates is supported by an overview of the kinetic theory of solid-solid transformations, with each step of data processing illustrated by experimental results of relevance to the geosciences. Reaction kinetics may be affected by several factors such as the sample microstructure, impurities or differential stress. Further high-pressure kinetic studies should investigate the influence of such processes, in order to acquire kinetic information more akin to natural or technological processes.


Sign in / Sign up

Export Citation Format

Share Document