Spin fluctuation theory of nearly ferromagnetic metals

1994 ◽  
Vol 6 (35) ◽  
pp. 7063-7073 ◽  
Author(s):  
Y Takahashi
Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2115 ◽  
Author(s):  
Takuo Sakon ◽  
Yuhi Hayashi ◽  
Dexin Li ◽  
Fuminori Honda ◽  
Gendo Oomi ◽  
...  

Experimental investigations into the field dependence of magnetization and the relationship between magnetization and magnetostriction in Ni2+xMnGa1−x (x = 0.00, 0.02, 0.04) alloy ferromagnets were performed following the self-consistent renormalization (SCR) spin fluctuation theory of itinerant ferromagnetism. In this study, we investigated the magnetization of and magnetostriction on Ni2+xMnGa1−x (x = 0.02, 0.04) to check whether these relations held when the ratio of Ni to Ga and, the valence electron concentration per atom, e/a were varied. When the ratio of Ni to Ga was varied, e/a increased with increasing x. The magnetization results for x = 0.02 (e/a = 7.535) and 0.04 (e/a = 7.570) suggest that the critical index δ of H ∝ Mδ is around 5.0 at the Curie temperature TC, which is the critical temperature of the ferromagnetic–paramagnetic transition. This result confirms Takahashi’s spin fluctuation theory and the experimental results of Ni2MnGa. The spontaneous magnetization pS slightly decreased with increasing x. For x = 0.00, the spin fluctuation parameter in k-space (momentum space; TA) and that in energy space (T0) were obtained. The relationship between peff/pS and TC/T0 can also be explained by Takahashi’s theory, where peff indicates the effective magnetic moments. We created a generalized Rhodes-Wohlfarth plot of peff/pS versus TC/T0 for other ferromagnets. The plot indicates that the relationship between peff/pS and T0/TC follows Takahashi’s theory. We also measured the magnetostriction for Ni2+xMnGa1−x (x = 0.02, 0.04). As a result, at TC, the plot of the magnetostriction (ΔL/L) versus M4 shows proportionality and crosses the origin. These magnetization and magnetostriction results were analyzed in terms of Takahashi’s SCR spin fluctuation theory. We investigated the magnetostriction at the premartensite phase, which is the precursor state to the martensitic transition. In Ni2MnGa system alloys, the maximum value of magnetostriction is almost proportional to the e/a.


2019 ◽  
Vol 289 ◽  
pp. 198-204
Author(s):  
Aleksandr Povzner ◽  
Tatyana A. Nogovitsyna ◽  
Arkadij G. Volkov ◽  
Tagir Nuretdinov

Based on the spin-fluctuation theory and LSDA + U + SO-calculations of the electronic structure, the spin states arising in the region of the magnetic phase transition in the helicoidal ferromagnet MnSi are studied. Within the framework of the stated model of the electronic structure, a temperature dependence of the homogeneous magnetic susceptibility is obtained near the temperature of the magnetic phase transition, which is in good agreement with experiment. At the temperature of the transition to the paramagnetic state, the left chirality vanishes, and spin correlations arise with a radius equal to the length of the spin helix, which then decreases with temperature. The results were obtained within the framework of the assignment of the Ministry of Education and Science of the Russian Federation, contract 3.9521.2017 / 8.9


2019 ◽  
Vol 5 (2) ◽  
pp. eaat5935 ◽  
Author(s):  
Naohito Tsujii ◽  
Akinori Nishide ◽  
Jun Hayakawa ◽  
Takao Mori

Increasing demand for higher energy efficiency calls for waste heat recovery technology. Thus, facilitating practical thermoelectric generation systems is strongly desired. One option is enhancing the thermoelectric power factor, S2/r, where S is the Seebeck coefficient and r is the electrical resistivity, although it is still challenging because of the trade-off between S and r. We demonstrate that enhanced S2/r can be achieved by incorporating magnetic interaction in ferromagnetic metals via the spin fluctuation arising from itinerant electrons. We show that electron-doped Heusler alloys exhibit weak ferromagnetism at TC near room temperature with a small magnetic moment. A pronounced enhancement around TC was observed, with a 20% improvement in the power factor from the case where spin fluctuation is suppressed by applying magnetic field. This result supports the merit of using spin fluctuation to further enhance thermoelectric properties and the potential to further probe correlations and synergy between magnetic and thermoelectric fields.


Sign in / Sign up

Export Citation Format

Share Document