Temperature corrections for constant temperature and constant current hot-wire anemometers

2010 ◽  
Vol 21 (10) ◽  
pp. 105404 ◽  
Author(s):  
Marcus Hultmark ◽  
Alexander J Smits
Author(s):  
Kazuhide Kaifuku ◽  
Soe Minn Khine ◽  
Tomoya Houra ◽  
Masato Tagawa

Hot-wire anemometry (HWA) is used for measuring velocity fluctuations such as turbulent flows. It is generally operated in three modes; constant-temperature (CT), constant-current (CC) and constant-voltage (CV) types. The constant-temperature anemometer (CTA) is the mainstream anemometer, while others are rarely used in measuring normal turbulent flows because of their insufficient response speed. However, since the constant-current anemometer (CCA) can be composed of simple circuits, the HWA can be realized at quite a low cost. In this study, the response characteristics of the CCA are theoretically analyzed, and a compensation scheme is proposed. The scheme is experimentally tested in a turbulent wake flow formed behind a cylinder. As a result, it has been confirmed that the root-mean-square (rms) velocities and the power-spectrum distributions compensated by the present scheme agree well with those measured with CTA. Hence, the CCA provides reliable measurement of turbulent velocity fluctuations.


2013 ◽  
Vol 284-287 ◽  
pp. 988-995 ◽  
Author(s):  
Tomáš Vít ◽  
Vít Lédl ◽  
Roman Dolecek ◽  
Pavel Psota

The presented paper compares results of measured temperature fields achieved by digital holographic interferometry (DHI) and hot wire anemometry. It shows the possibility of using holographic interferometry for the visualization of temperature fields in periodically moving fluids. The measurement of temperature fields in moving fluids has many inherent difficulties. The usage of point temperature measurement methods, such as Constant Current Anemometry (CCA), is limited to frequencies up to 3000 Hz. This frequency should be the limiting factor for using CCA in fluids when a rapid change of temperature occurs. This shortcoming of CCA measurements could be overcome through the use of optical methods such as digital holographic interferometry. It is necessary to employ a special holographic setup with double sensitivity instead of the commonly used Mach-Zehnder type of holographic interferometer in order to attain parameters sufficient for the studied case. This setup is not as light-efficient as the Mach-Zehnder type but has double sensitivity. The special technique of acquiring and phase averaging the results from holographic interferometry is presented. The paper also shows the first results of an evaluated 3D temperature field.


1972 ◽  
Vol 23 (4) ◽  
pp. 285-300 ◽  
Author(s):  
C E Whitfield ◽  
J C Kelly ◽  
B Barry

SummaryMany investigators have studied the aerodynamics of axial flow turbomachinery but none has produced a complete map of the three-dimensional flow behind a rotor row. This is of considerable interest to the aero-acoustician. A system is described which uses a constant temperature hot-wire anemometer to analyse the flow behind such a rotor. Although much information may be extracted by using the technique, its interpretation depends to a large extent on its form of presentation. An analysis of the flow behind a research fan is used as a means of discussing various forms of visual presentation.


2020 ◽  
Vol 10 (24) ◽  
pp. 9058
Author(s):  
Hidemi Takahashi ◽  
Mitsuru Kurita ◽  
Hidetoshi Iijima ◽  
Seigo Koga

This study proposes a unique approach to convert a voltage signal obtained from a hot-wire anemometry to flow velocity data by making a slight modification to existing temperature-correction methods. The approach was a simplified calibration method for the constant-temperature mode of hot-wire anemometry without knowing exact wire temperature. The necessary data are the freestream temperature and a set of known velocity data which gives reference velocities in addition to the hot-wire signal. The proposed method was applied to various boundary layer velocity profiles with large temperature variations while the wire temperature was unknown. The target flow velocity was ranged between 20 and 80 m/s. By using a best-fit approach between the velocities in the boundary layer obtained by hot-wire anemometry and by the pitot-tube measurement, which provides reference data, the unknown wire temperature was sought. Results showed that the proposed simplified calibration approach was applicable to a velocity range between 20 and 80 m/s and with temperature variations up to 15 °C with an uncertainty level of 2.6% at most for the current datasets.


1972 ◽  
Vol 94 (1) ◽  
pp. 17-22 ◽  
Author(s):  
K. Hollasch ◽  
B. Gebhart

Calibration of hot-wire probes operated in a constant-temperature mode in water at low velocities is discussed. Operation under circumstances where natural convection effects are important is considered. A method of calibrating a constant-temperature hot-wire probe for variations in fluid temperature is presented. The method consists of varying wire overheat during calibration at a constant fluid temperature. A relation is derived analytically relating anemometer output with a variable overheat resistance to anemometer output with fluid temperature variations. An experimental study to verify the analysis is presented.


1967 ◽  
Vol 71 (681) ◽  
pp. 657-658 ◽  
Author(s):  
A. D. Bond ◽  
A. M. Porter

Summary:—This note describes how a single constant temperature hot wire may be used for measurements of direction, velocity and turbulence in a two-dimensional flow. The wire probe is rotated by a servo motor which automatically sets the wire with its axis either in the stream direction or normal to the flow. The accuracy of setting the wire in the direction of the stream is about , and across the stream is about 1°. If the higher accuracy is demanded the velocity and turbulence measurements require a second setting of the probe, at 90° to the previous one. When less precision is acceptable, the angle, velocity and turbulence measurements may be taken at the single setting, normal to the stream.


Sign in / Sign up

Export Citation Format

Share Document