A tracking motion approach for a piezotube actuator in a disk drive subject to disk deformation and disturbance

2007 ◽  
Vol 16 (5) ◽  
pp. 1542-1548 ◽  
Author(s):  
C S Chang ◽  
T S Liu ◽  
Y C Tang
Keyword(s):  
2021 ◽  
Vol 9 (3A) ◽  
Author(s):  
Yu-Sheng Lu ◽  
◽  
Yueh-Tsang Li ◽  
Ming-Chang Lin ◽  
◽  
...  

Periodic exogenous signals often exist in motion systems, especially those involving one or more rotating elements. These periodic exogenous signals deteriorate the performance of motion systems, and these adverse effects cannot be practically eliminated by straightforwardly increasing feedback control gains due to sensor noise, actuator saturation, and unmodeled plant dynamics. This paper describes a sliding repetitive controller for motion systems subject to periodic exogenous signals. Moreover, an adaptive law for bound estimation is devised to ensure the presence of a sliding motion for both repetitive learning and disturbance observation. The tracking motion system of a disk drive is considered in practice, and a traditional repetitive controller is also implemented for performance comparisons with the proposed scheme. Experimental results are reported in this paper, showing the efficacy of the proposed scheme.


Author(s):  
Vikas Tomer ◽  
Vedna Sharma ◽  
Sonali Gupta ◽  
Devesh Pratap Singh

1987 ◽  
Author(s):  
Teruo Fujita ◽  
Nobuo Takeshita ◽  
Morihiro Karaki ◽  
Mitsushige Kondo ◽  
Kenjiro Kime

2020 ◽  
Vol 10 (3) ◽  
pp. 999
Author(s):  
Hyokyung Bahn ◽  
Kyungwoon Cho

Recently, non-volatile memory (NVM) has advanced as a fast storage medium, and legacy memory subsystems optimized for DRAM (dynamic random access memory) and HDD (hard disk drive) hierarchies need to be revisited. In this article, we explore the memory subsystems that use NVM as an underlying storage device and discuss the challenges and implications of such systems. As storage performance becomes close to DRAM performance, existing memory configurations and I/O (input/output) mechanisms should be reassessed. This article explores the performance of systems with NVM based storage emulated by the RAMDisk under various configurations. Through our measurement study, we make the following findings. (1) We can decrease the main memory size without performance penalties when NVM storage is adopted instead of HDD. (2) For buffer caching to be effective, judicious management techniques like admission control are necessary. (3) Prefetching is not effective in NVM storage. (4) The effect of synchronous I/O and direct I/O in NVM storage is less significant than that in HDD storage. (5) Performance degradation due to the contention of multi-threads is less severe in NVM based storage than in HDD. Based on these observations, we discuss a new PC configuration consisting of small memory and fast storage in comparison with a traditional PC consisting of large memory and slow storage. We show that this new memory-storage configuration can be an alternative solution for ever-growing memory demands and the limited density of DRAM memory. We anticipate that our results will provide directions in system software development in the presence of ever-faster storage devices.


Sign in / Sign up

Export Citation Format

Share Document