Magnetic-field-dependent sound transmission properties of magnetorheological elastomer-based adaptive panels

2010 ◽  
Vol 19 (3) ◽  
pp. 035006 ◽  
Author(s):  
Seyyed M Hasheminejad ◽  
Maysam Shabanimotlagh
2016 ◽  
Vol 776 ◽  
pp. 012024 ◽  
Author(s):  
N. A. Yunus ◽  
S. A. Mazlan ◽  
Ubaidillah ◽  
S. A. A. Aziz ◽  
M. H. Ahmad Khairi ◽  
...  

2013 ◽  
Vol 62 (2) ◽  
pp. 220-228 ◽  
Author(s):  
In-Hyung Yang ◽  
Ji-Hyun Yoon ◽  
Jae-Eun Jeong ◽  
Un-Chang Jeong ◽  
Jin-Su Kim ◽  
...  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-499-C6-501 ◽  
Author(s):  
H. Gerlinger ◽  
G. Schaack

1981 ◽  
Vol 42 (C5) ◽  
pp. C5-689-C5-693
Author(s):  
J. D.N. Cheeke ◽  
G. Madore ◽  
A. Hikata

2021 ◽  
pp. 107754632110253
Author(s):  
Emiliano Rustighi ◽  
Diego F Ledezma-Ramirez ◽  
Pablo E Tapia-Gonzalez ◽  
Neil Ferguson ◽  
Azrul Zakaria

This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1870
Author(s):  
Dmitry Borin ◽  
Robert Müller ◽  
Stefan Odenbach

This paper presents the results of an experimental study of the influence of an external magnetic field on the shear flow behaviour of a magnetic fluid based on barium hexaferrite nanoplates. With the use of rheometry, the magnetoviscosity and field-dependent yield-stress in the fluid are evaluated. The observed fluid behaviour is compared to that of ferrofluids with magnetic nanoparticles having high dipole interaction. The results obtained supplement the so-far poorly studied topic of the influence of magnetic nanoparticles’ shape on magnetoviscous effects. It is concluded that the parameter determining the observed magnetoviscous effects in the fluid under study is the ratio V2/l3, where V is the volume of the nanoparticle and l is the size of the nanoparticle in the direction corresponding to its orientation in the externally applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document