Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency

2016 ◽  
Vol 18 (11) ◽  
pp. 1101-1109 ◽  
Author(s):  
Guozhan Li ◽  
Fu Chen ◽  
Linxi Li ◽  
Yanping Song
Author(s):  
Guozhan Li ◽  
Jianyang Yu ◽  
Fu Chen ◽  
Huaping Liu ◽  
Yanping Song ◽  
...  

This paper presents results on a saw tooth plasma actuator for the inducement of flow topology and the improvement of flat plate film cooling efficiency. A phenomenological plasma model is constructed to generate the three-dimensional plasma force vectors of the saw tooth plasma actuator. The dynamics of airflow induced by the saw tooth plasma actuator on a flat plate in quiescent air are numerically investigated. The results show that the saw tooth plasma actuator pushes the fluids in all three directions and induces a three-dimensional jet flow with counter rotating streamwise oriented vortices that propagate downstream. The flow field characteristics of both cylindrical hole with and without the saw tooth plasma actuator are studied by large eddy simulation, and a comparison is made. The saw tooth plasma actuator improves the cold jet adherent performance and promotes the spanwise spreading rate of the coolant. Meanwhile, the streamwise vortices induced by the saw tooth plasma actuator suppress the development of counter-rotating vortex pair, thus delaying the diffusion of coolant in the crossflow. Accordingly, the centerline cooling efficiency and the spanwise-averaged cooling efficiency are improved by 36% and 144% at x/ d = 15, compared with the baseline case without the saw tooth plasma actuator.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 198
Author(s):  
Seung Il Baek ◽  
Joon Ahn

A large eddy simulation (LES) was performed for film cooling in the gas turbine blade involving spanwise injection angles (orientation angles). For a streamwise coolant injection angle (inclination angle) of 35°, the effects of the orientation angle were compared considering a simple angle of 0° and 30°. Two ratios of the coolant to main flow mass flux (blowing ratio) of 0.5 and 1.0 were considered and the experimental conditions of Jung and Lee (2000) were adopted for the geometry and flow conditions. Moreover, a Reynolds averaged Navier–Stokes simulation (RANS) was performed to understand the characteristics of the turbulence models compared to those in the LES and experiments. In the RANS, three turbulence models were compared, namely, the realizable k-ε, k-ω shear stress transport, and Reynolds stress models. The temperature field and flow fields predicted through the RANS were similar to those obtained through the experiment and LES. Nevertheless, at a simple angle, the point at which the counter-rotating vortex pair (CRVP) collided on the wall and rose was different from that in the experiment and LES. Under the compound angle, the point at which the CRVP changed to a single vortex was different from that in the LES. The adiabatic film cooling effectiveness could not be accurately determined through the RANS but was well reflected by the LES, even under the compound angle. The reattachment of the injectant at a blowing ratio of 1.0 was better predicted by the RANS at the compound angle than at the simple angle. The temperature fluctuation was predicted to decrease slightly when the injectant was supplied at a compound angle.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Film cooling is commonly used to protect turbine vanes and blades from the hot gases produced in the combustion chamber. The design and optimization of these systems can however only be achieved if a precise prediction of the fluid mechanics and film efficiency is guaranteed at a level where induced losses are fully mastered. Such a prerequisite induces at the numerical level to be able to identify and assess losses. In this context, the present study addresses loss assessment in a wall-resolved Large Eddy Simulation (LES) of the film-cooled high-pressure turbine blade cascade T120D from the European project AITEB II. The objectives are twofolds: (1) to evaluate the capacity of LES to predict adiabatic film cooling effectiveness in a mastered academic case; and (2) to investigate loss generation mechanisms in a fully anisothermal configuration. When it comes to LES predictions of T120D, the flow structure around the blade and the coolant jet organization are coherent with literature findings. Satisfactory agreements are furthermore retrieved for the pressure load prediction as well as the adiabatic film effectiveness if compared to the experiment. Loss generation is then investigated illustrating the fact that aerodynamics losses dominate mixing losses which are mainly located in the coolant film. This is in line with the temperature difference between the hot and coolant flows that is low for this experimental condition. Distinct contributions can however be made available by studying the local loss generation maps by means of Second Law Analysis if recast in the specific context of anisothermal flows when simulated by LES.


Sign in / Sign up

Export Citation Format

Share Document