Ghost scalar field dark energy models from an extended Kaluza–Klein perspective

2021 ◽  
Vol 38 (7) ◽  
pp. 075004
Author(s):  
Murat Korunur
2013 ◽  
Vol 22 (05) ◽  
pp. 1350018 ◽  
Author(s):  
K. KARAMI ◽  
S. ASADZADEH ◽  
M. MOUSIVAND ◽  
Z. SAFARI

Within the framework of FRW cosmology, we study the QCD modified ghost scalar field models of dark energy (DE) in the presence of both interaction and viscosity. For a spatially nonflat FRW universe containing modified ghost dark energy (MGDE) and dark matter (DM), we obtain the equation of state of MGDE, the deceleration parameter as well as a differential equation governing the MGDE density parameter. We also investigate the growth of structure formation for our model in a linear perturbation regime. Furthermore, we reconstruct both the dynamics and potentials of the quintessence, tachyon, K-essence and dilaton scalar field DE models according to the evolution of the MGDE density.


2011 ◽  
Vol 26 (33) ◽  
pp. 2487-2499 ◽  
Author(s):  
A. KHODAM-MOHAMMADI

In this work, the PLECHDE model with Granda–Oliveros (G–O) IR-cutoff is studied. The evolution of dark energy density, deceleration and EoS parameters are calculated. I demonstrate that under a condition, our universe can accelerate near the phantom barrier at present time. We calculate these parameters also in PLECHDE at Ricci scale, when α = 2 and β = 1, and a comparison between Ricci scale, G–O cutoff and non-corrected HDE without matter field with G–O cutoff is done. The correspondence between this model and some scalar field of dark energy models is established. By this method, the evolutionary treatment of kinetic energy and potential for quintessence, tachyon, K-essence and dilaton fields, are obtained. I show that the results has a good compatibility with previous work in the limiting case of flat, dark dominated and non-corrected holographic dark energy.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.


2017 ◽  
Vol 26 (13) ◽  
pp. 1750149 ◽  
Author(s):  
Arshdeep Singh Bhatia ◽  
Sourav Sur

We study the phase-space dynamics of cosmological models in the theoretical formulations of nonminimal metric-torsion couplings with a scalar field, and investigate in particular the critical points (CPs) which yield stable solutions exhibiting cosmic acceleration driven by the dark energy (DE). The latter is so defined that it effectively has no direct interaction with the cosmological fluid, although in an equivalent scalar–tensor cosmological setup, the scalar field interacts with the fluid (which we consider to be the pressureless dust). Determining the conditions for the existence of the stable CPs, we check their physical viability in both Einstein and Jordan frames. We also verify that in either of these frames, the evolution of the universe at the corresponding stable points matches with that given by the respective exact solutions we have found in an earlier work [S. Sur and A. S. Bhatia, arXiv:1611.00654 [gr-qc]]. We not only examine the regions of physical relevance in the phase-space when the coupling parameter is varied, but also demonstrate the evolution profiles of the cosmological parameters of interest along fiducial trajectories in the effectively noninteracting scenarios, in both Einstein and Jordan frames.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950161 ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Supriya Pan ◽  
Weiqiang Yang

We investigate the cosmological dynamics of interacting dark energy models in which the interaction function is nonlinear in terms of the energy densities. Considering explicitly the interaction between a pressureless dark matter and a scalar field, minimally coupled to Einstein gravity, we explore the dynamics of the spatially flat FLRW universe for the exponential potential of the scalar field. We perform the stability analysis for three nonlinear interaction models of our consideration through the analysis of critical points and we investigate the cosmological parameters and discuss the physical behavior at the critical points. From the analysis of the critical points we find a number of possibilities that include the stable late-time accelerated solution, [Formula: see text]CDM-like solution, radiation-like solution and moreover the unstable inflationary solution.


Sign in / Sign up

Export Citation Format

Share Document