Kaluza–Klein minimally interacting dark energy model in the presence of massive scalar field

2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.

2020 ◽  
Vol 98 (11) ◽  
pp. 993-998
Author(s):  
K. Deniel Raju ◽  
M.P.V.V. Bhaskara Rao ◽  
Y. Aditya ◽  
T. Vinutha ◽  
D.R.K. Reddy

This study is mainly concerned with a spatially homogeneous and anisotropic Kantowski–Sachs cosmological model with anisotropic dark energy fluid and massive scalar field. We solve the field equations using (i) the shear scalar proportionality to the expansion scalar and (ii) a mathematical condition that is a consequence of the power law between the scalar field and the average scale factor of the universe, and the corresponding dark energy model is presented. The cosmological parameters of the model are computed and discussed, as well as the relevance of its dynamical aspects to the recent scenario of the accelerated expansion of the universe.


Author(s):  
M. P. V. V. Bhaskara Rao ◽  
Y. Aditya ◽  
U. Y. Divya Prasanthi ◽  
D. R. K. Reddy

This paper deals with the construction of locally rotationally symmetric (LRS) Bianchi type-II (B-II) cosmological models obtained by solving Einstein field equations coupled with an attractive massive scalar field (MSF) when the source of gravitation is the mixture of cosmic string cloud and anisotropic dark energy (DE) fluid which are minimally interacting. We have obtained exact cosmological models by using (i) shear scalar is proportional to the scalar expansion of the space–time and (ii) a power-law relation between the average scale factor of the universe and the scalar field. Our models represent string cosmological model and DE model in the presence of MSF. Using our model, we determine cosmological parameters such as energy densities, deceleration parameter, statefinders and equation of state parameter. We, also, present the tension density and energy density of the string. We discuss the physical aspects of these cosmological parameters. It is observed that our models represent accelerated expansion phenomenon of our universe as confirmed by Supernova Ia experiment.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2014 ◽  
Vol 92 (9) ◽  
Author(s):  
P.K. SAHOO ◽  
B. Mishra

A five dimensional Kaluza-Klein space time is considered with wet dark fluid (WDF) source in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D \textbf{84}, 024020, (2011)). A new equation of state in the form of WDF has been used for dark energy (DE) component of the universe. It is modeled on the equation of state p=\omega(\rho-\rho^*) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for power law and exponential law of the volumetric expansion. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and the very late time of the universe. This model obtained here shows that even in the presence of wet dark fluid, the universe indicates accelerated expansion of the universe.


2014 ◽  
Vol 92 (9) ◽  
pp. 1062-1067 ◽  
Author(s):  
P. K. Sahoo ◽  
B. Mishra

In this paper, we have investigated the five-dimensional Kaluza–Klein space time with wet dark fluid (WDF), which is a candidate for dark energy (DE), in the framework of f(R, T) gravity. R and T denote the Ricci scalar and the trace of the energy–momentum tensor, respectively (Harko et al. Phys. Rev. D, 84, 024020 (2011)). We have used equation of state in the form of WDF for the DE component of the universe. It is modeled on the equation of state p = ω(ρ – ρ*). With the help of the power law and exponential law of volumetric expansion, we have derived the exact solutions of the corresponding field equations. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and very late time of the universe. It is concluded that the model obtained here shows that even in the presence of WDF, the universe indicates accelerated expansion of the universe.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950066 ◽  
Author(s):  
Kangujam Priyokumar Singh ◽  
Rajshekhar Roy Baruah

Here in this work, we investigated the possible cosmological consequences of the interaction of Brans–Dicke scalar field and massive scalar field by considering spherically symmetric Robertson–Walker metric. The present problem can also be treated as an extension work of [K. Priyokumar et al., Interaction of gravitational field and Brans–Dicke field, Res. Astron. Astrophys. 16(4) (2016) 64; K. Priyokumar and M. Dewri, Interaction of electromagnetic field and Brans–Dicke field, Chinease J. Phys. 54 (2016) 845]. The exact solutions of the field equations are obtained with seven different cases. The behavior of the model and their contribution to the process of the evolution are examined in detail from some explicit and reasonable values of free parameter. We also presented the variations of certain physical parameters versus cosmic time graphically to compare our solutions with the present observational findings. When we studied further, it is found that the cosmological term [Formula: see text] takes a great role in the accelerating expansion of our universe when both scalar fields are exponentially increasing functions of time, while the cosmological term will not appear in the case when both the scalar fields are exponentially decreasing functions of time. Also, the scalar field is seen to have a tendency to increase the expansion of the universe, thereby flattening the universe.


2020 ◽  
Vol 17 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Vipin Chandra Dubey ◽  
Ambuj Kumar Mishra ◽  
Shikha Srivastava ◽  
Umesh Kumar Sharma

In this work, we have examined the behavior of Bianchi-I (axially symmetric) matter-dominated and the anisotropic Universe with the proposed dark energy, Tsallis holographic dark energy (THDE), with the Hubble horizon as infrared cut-off [Tavayef et al., Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195–200]. The Universe evolution from matter-dominated epoch to dark energy dominated epoch is described by our proposed THDE model. The EoS parameter in our THDE model explains the evolution of the Universe according to the value of nonextensive or Tsallis parameter [Formula: see text], phantom era ([Formula: see text]) or quintom (phantom line crossing) and the quintessence era ([Formula: see text]), before reaching to completely dark energy-dominated era in the future. Additionally, we also plan to reconcile the dark energy by the method of reconstructing the evolution of the scalar field potential. For the analysis, we take into account the quintessence field and phantom scalar field for this reconstruction, which at present shows the accelerated expansion.


Author(s):  
Sudipto Roy ◽  
Anirban Sarkar ◽  
Pritha Ghosh

A theoretical model, regarding the time dependence of several cosmological parameters, has been constructed in the present study, in the framework of Kaluza-Klein theory, using its field equations for a spatially flat metric. Time dependent empirical expressions of the cosmological constant and the equation of state (EoS) parameter have been substituted into the field equations to determine the time dependence of various cosmological parameters. Time variations of these parameters have been shown graphically. The cosmological features obtained from this model are found to be in agreement with the observed characteristics of the accelerating universe. Interestingly, the signature flipping of the deceleration parameter, from positive to negative, is predicted by this model, indicating a transformation of the universe from a state of decelerated expansion to accelerated expansion, as obtained from astrophysical observations. Time dependence of the gravitational constant (G), energy density (?), cosmological constant (?) and the EoS parameter (?) have been determined and depicted graphically in the present study.


Author(s):  
Sudipto Roy ◽  
Avik Ghosh ◽  
Adrika Dasgupta

In the framework of Brans-Dicke (BD) theory of gravitation, the time dependence of some cosmological parameters have been determined in the present study, for an universe having a FRW space-time with zero spatial curvature. The time variations of the energy density, BD parameter, equation of state (EoS) parameter have been determined, from the field equations of the BD theory, in the initial part of this model. For this purpose, we have used ansatzes relating the scalar field with the scale factor and also linking the BD parameter with the scalar field. For these calculations, an empirical expression for the scale factor has been used. This scale factor has been so chosen that it leads to a signature flip of the deceleration parameter from positive to negative in the course of its evolution with time, indicating a change of phase from decelerated expansion to accelerated expansion. Time dependence of the density parameters for matter and dark energy has also been studied here. Using their expressions we have determined the time dependence of the densities of matter and dark energy. The time variations of all these parameters have been shown graphically. Apart from them, we have also shown the variations of the deceleration parameter and the BD parameter as functions of the scalar field graphically.


Sign in / Sign up

Export Citation Format

Share Document