Effect of mode order, resonator length, curvature, and electrode coverage on enhancing the performance of biconvex resonators

2018 ◽  
Vol 28 (9) ◽  
pp. 094002 ◽  
Author(s):  
Muhammad Wajih Ullah Siddiqi ◽  
Cheng Tu ◽  
Joshua E-Y Lee
2021 ◽  
Author(s):  
Han Ye ◽  
Yanrong Wang ◽  
Shuhe Zhang ◽  
Danshi Wang ◽  
Yumin Liu ◽  
...  

Precise manipulation of mode order in silicon waveguide plays a fundamental role in the on-chip all-optical interconnections and is still a tough task in design when the functional region is...


2021 ◽  
pp. 1-24
Author(s):  
Zeyuan Yang ◽  
Yadong Wu ◽  
Hua Ouyang

Abstract Rotating instability (RI) and rotating stall (RS) are two types of aerodynamic instability in axial compressors. The former features the side-by-side peaks below the blade passing frequency (BPF) in frequency spectra, and the latter represents one or more stall cells rotating in the compressor. This paper presents an experimental on the nearfield pressure and farfield acoustic characteristics of RI phenomenon in a low-speed axial compressor rotor, which endures both RI and RS at several working conditions. In order to obtain the high-order modes of RI and other aerodynamic instability, a total of 9 or 20 Kulites are circumferentially mounted on the casing wall to measure the nearfield pressure fluctuation using a mode order calibration method. Meantime in the farfield 16 microphones are planted to measure the acoustic mode order using the compressive sensing method. Through calibration the experiments acquire the mode orders generated by RI and the interaction between RI and BPF, which is higher than the number of transducers. As for RS, the mode decomposition shows a mode order of 1, indicating one single stall cell rotating in the compressor. This experiment also shows that amplitude of RI modes is decreased when RS occurs, but RS modes and RI modes will both be enhanced if the flow rate is further reduced. This experiment reveals that RI experiences three stages of “strengthen-weaken-strengthen”, and hence RI may not be regarded only as “prestall” disturbance.


2021 ◽  
Author(s):  
Zeyuan Yang ◽  
Yadong Wu ◽  
Hua Ouyang

Abstract Rotating instability (RI) and rotating stall (RS) are two types of aerodynamic instability in axial compressors. The former features the side-by-side peaks below the blade passing frequency (BPF) in frequency spectra, and the latter represents one or more stall cells rotating in the compressor. This paper presents an experimental on the nearfield pressure and farfield acoustic characteristics of RI phenomenon in a low-speed axial compressor rotor, which endures both RI and RS at several working conditions. In order to obtain the high-order modes of RI and other aerodynamic instability, a total of 9 or 20 Kulites are circumferentially mounted on the casing wall to measure the nearfield pressure fluctuation using a mode order calibration method. Meantime in the farfield 16 microphones are planted to measure the acoustic mode order using the compressive sensing method. Through calibration the experiments acquire the mode orders generated by RI and the interaction between RI and BPF, which is higher than the number of transducers. As for RS, the mode decomposition shows a mode order of 1, indicating one single stall cell rotating in the compressor. This experiment also shows that amplitude of RI modes is decreased when RS occurs, but RS modes and RI modes will both be enhanced if the flow rate is further reduced. This experiment reveals that RI experiences three stages of “strengthen-weaken-strengthen”, and hence RI may not be regarded only as “prestall” disturbance.


2018 ◽  
Vol 44 ◽  
pp. 00063 ◽  
Author(s):  
Jakub Kajurek ◽  
Artur Rusowicz

Thermoacoustic refrigerator is a new and emerging technology capable of transporting heat from a low-temperature source to a high-temperature source by utilizing the acoustic power input. These devices, operating without hazardous refrigerants and owning no moving components, show advantages of high reliability and environmental friendliness. However, simple to fabricate, the designing of thermoacoustic refrigerators is very challenging. This paper illustrates the impact of significant factors on the performance of the thermoacoustic refrigerator which was measured in terms of the temperature difference generated across the stack ends. The experimental device driven by a commercial loudspeaker and air at atmospheric pressure as a working fluid was examined under various resonator length and operating frequencies. The results indicate that appropriate resonator’s length and operating frequency lead to an increase in the temperature difference created across the stack. The maximum values were achieved for operating frequency equalled to 200 and 300 Hz whereas resonator length corresponded to the half-length of the acoustic wave for these frequencies. The results of experiment also confirm that relationship between these parameters is strongly affected by the stack spacing, which in this research was equalled to 0.4 mm.


Author(s):  
А.Е. Жуков ◽  
Н.В. Крыжановская ◽  
Э.И. Моисеев ◽  
А.С. Драгунова ◽  
А.М. Надточий ◽  
...  

The rate equations are used to analyze the characteristics of a tandem consisting of a laser diode and a semiconductor optical amplifier made of a single heterostructure with quantum dots. The optimal value of the current distribution coefficient the amplifier and the laser, as well as the optimal resonator length that provides the highest output power of the tandem were determined. It is shown that the use of the tandem allows, at the same total consumed current, to significantly (more than 4 times for 1 A) increase the power emitted through the ground-state optical transition in comparison with that achievable with a laser diode solely being limited by the onset of lasing through an excited-state optical transition.


2005 ◽  
Vol 872 ◽  
Author(s):  
M.C. Robinson ◽  
P.D. Hayenga ◽  
J.H. Cho ◽  
C.D. Richards ◽  
R.F. Richards ◽  
...  

AbstractPiezoelectric materials convert mechanical to electrical energy under stretching and bending conditions. Optimizing the coupling conversion is imperative to the electromechanical behavior of a micromachined membrane's performance. This paper discusses analytical calculations that were devised to determine the microscale structure that minimizes residual stress and outlines the implementation of fabrication technique variations including three different electrode configurations, trenching around the membrane, and reducing the total composite residual stress of the support structure using compressive silicon oxide. Lead zirconacte titanate (PZT) films between 1 and 3 μm thick with a ratio of Zr to Ti of 40:60 were deposited onto 3 mm square silicon membranes. The total tensile stress in the composite structure reaches 100 MPa during standard fabrication processing. Utilizing analytical calculations, a structure was determined that lowered the residual stress of the composite to 11 MPa and increased the electromechanical coupling 35 times. Changing the geometry of the electrode coverage decreased the residual stress of the composite by 40%. Trenching around the membrane provided a membrane with boundary conditions that approached simply supported and decreased the composite residual stress by another 16%. A comparison of the electromechanical behavior for these structures will be discussed, showing a route towards increasing electromechanical coupling in PZT MEMS.


Sign in / Sign up

Export Citation Format

Share Document