Two-dimensional particle-in-cell simulations of standing waves and wave-induced hysteresis in asymmetric capacitive discharges

2017 ◽  
Vol 50 (49) ◽  
pp. 495201 ◽  
Author(s):  
De-Qi Wen ◽  
E Kawamura ◽  
M A Lieberman ◽  
A J Lichtenberg ◽  
You-Nian Wang
2010 ◽  
Vol 645 ◽  
pp. 411-434 ◽  
Author(s):  
PETER GUBA ◽  
M. GRAE WORSTER

We study nonlinear, two-dimensional convection in a mushy layer during solidification of a binary mixture. We consider a particular limit in which the onset of oscillatory convection just precedes the onset of steady overturning convection, at a prescribed aspect ratio of convection patterns. This asymptotic limit allows us to determine nonlinear solutions analytically. The results provide a complete description of the stability of and transitions between steady and oscillatory convection as functions of the Rayleigh number and the compositional ratio. Of particular focus are the effects of the basic-state asymmetries and non-uniformity in the permeability of the mushy layer, which give rise to abrupt (hysteretic) transitions in the system. We find that the transition between travelling and standing waves, as well as that between standing waves and steady convection, can be hysteretic. The relevance of our theoretical predictions to recent experiments on directionally solidifying mushy layers is also discussed.


2010 ◽  
Vol 108 (10) ◽  
pp. 103305 ◽  
Author(s):  
E. Kawamura ◽  
A. J. Lichtenberg ◽  
M. A. Lieberman

Author(s):  
Chengcong Liao ◽  
Hongyi Zhao ◽  
Dong-Sheng Jeng

In this study, a two-dimensional poro-elasto-plastic model for the wave-induced liquefaction in a porous seabed was presented. Two mechanisms of the wave-induced pore pressures were considered. Both elastic components (for oscillatory) and the plastic components (for residual) were integrated to predict the wave-induced excess pore pressures in marine sediments. The proposed 2D poro-elasto-plastic model allows for the pore pressure build-up process in a sandy seabed. The proposed model overall agreed well with the previous wave experiments and centrifuge tests. Numerical example shows that the pattern of progressive waves -induced liquefaction gradually changed from 2D to 1D.


2001 ◽  
Vol 45 (03) ◽  
pp. 216-227
Author(s):  
R. Centeno ◽  
K. S. Varyani ◽  
C. Guedes Soares

An experimental program was performed with hard-chine catamaran models in regular waves. The distance between the demi-hulls of the models was changed to assess its effects on the wave-induced motions. The results allowed the study of some aspects related to catamaran motions, like the interference between the hulls and resonance frequencies. The experimental results are compared with calculations performed with a recently developed code based on a two-dimensional potential flow theory in which viscous forces are included through a cross-flow drag approach. The effect of the hull distance in the heave and pitch motion responses and the importance of the viscous forces in such hull configurations are shown.


2010 ◽  
Vol 5 (2) ◽  
pp. 85-97
Author(s):  
Andrey V. Terekhov ◽  
Igor V. Timofeev ◽  
Konstantin V. Lotov

A two-dimensional particle-in-cell numerical model is developed to simulate collective relaxation of powerful electron beams in plasmas. To increase the efficiency of parallel particle-in-cell simulations on supercomputers, the Dichotomy Algorithm is used for inversion of the Laplace operator. The proposed model is tested with several well-known physical phenomena and is shown to adequately simulate basic effects of the beam driven turbulence. Also, the modulational instability is studied in the regime when the energy of pumping wave significantly exceeds the thermal plasma energy


2018 ◽  
Vol 839 ◽  
pp. 408-429 ◽  
Author(s):  
Jim Thomas ◽  
Oliver Bühler ◽  
K. Shafer Smith

Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.


Sign in / Sign up

Export Citation Format

Share Document